Since its discovery over five decades ago, an emphasis on better understanding the structure and functional role of AMPK has been prevalent. In that time, the role of AMPK as a heterotrimeric enzyme that senses the energy state of various cell types has been established. Skeletal muscle is a dynamic, plastic tissue that adapts to both functional and metabolic demands of the human body, such as muscle contraction or exercise. With a deliberate focus on AMPK in skeletal muscle, this review places a physiological lens to the association of AMPK and glycogen that has been established biochemically. It discusses that, to date, no in vivo association of AMPK with glycogen has been shown and this is not altered with interventions, either by physiological or biochemical utilisation of glycogen in skeletal muscle. The reason for this is likely due to the persistent phosphorylation of Thr148 in the β-subunit of AMPK which prevents AMPK from binding to carbohydrate domains. This review presents the correlative data that suggests AMPK senses glycogen utilisation through a direct interaction with glycogen, the biochemical data showing that AMPK can bind carbohydrate in vitro, and highlights that in a physiological setting of rodent skeletal muscle, AMPK does not directly bind to glycogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576187 | PMC |
http://dx.doi.org/10.1042/EBC20240006 | DOI Listing |
J Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.
Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Jayhawk Athletic Performance Laboratory-Wu Tsai Human Performance Alliance, University of Kansas, University of Kansas, Lawrence, Kansas.
Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Sport Sciences, Waseda University, Saitama, Japan.
Walking patterns can differ between children and adults, both kinematically and kinetically. However, the detailed nature of the ankle pattern has not been clarified. We investigated musculature, biomechanics, and muscle activation strategies and their relevance to walking performance in preschool (PS) and school children (SC), with adults (AD) as reference.
View Article and Find Full Text PDFAndes Pediatr
August 2023
Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile.
Unlabelled: The ACTN3 R577X polymorphism determines the expression of alpha-actinin 3 protein in human muscle. The homozygous XX genotype fails to synthesize alpha-actinin 3 and is associated with lower muscle strength than the RR genotype. Neuromuscular diseases (NMD) generate an accelerated loss of muscle strength, and their relationship with the ACTN3 gene has not been established.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!