Background: While sex-based differences in various health scenarios have been thoroughly acknowledged in the literature, we lack sufficient tools and methods that allow for an in-depth analysis of sex as a variable in biomedical research. To fill this knowledge gap, we created MetaFun as an easy-to-use web-based tool to meta-analyze multiple transcriptomic datasets with a sex-based perspective to gain major statistical power and biological soundness.

Description: MetaFun is a complete suite that allows the analysis of transcriptomics data and the exploration of the results at all levels, performing single-dataset exploratory analysis, differential gene expression, gene set functional enrichment, and finally, combining results in a functional meta-analysis. Which biological processes, molecular functions or cellular components are altered in a common pattern in different transcriptomic studies when comparing male and female patients? This and other biological questions of interest can be answered with the use of MetaFun. This tool is available at https://bioinfo.cipf.es/metafun while additional help can be found at https://gitlab.com/ubb-cipf/metafunweb/-/wikis/Summary .

Conclusions: Overall, Metafun is the first open-access web-based tool to identify consensus biological functions across multiple transcriptomic datasets, helping to elucidate sex differences in numerous diseases. Its use will facilitate the generation of novel biological knowledge that can be used in the research and application of Personalized Medicine considering the sex of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351081PMC
http://dx.doi.org/10.1186/s13293-024-00640-0DOI Listing

Publication Analysis

Top Keywords

multiple transcriptomic
12
sex-based differences
8
transcriptomic studies
8
functional meta-analysis
8
web-based tool
8
transcriptomic datasets
8
metafun
5
biological
5
metafun unveiling
4
unveiling sex-based
4

Similar Publications

In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Purpose: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.

View Article and Find Full Text PDF

Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O) and nitric oxide (NO).

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!