Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity.

Methods Mol Biol

Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.

Published: August 2024

As an interferon-stimulating factor protein, STING plays a role in the response and downstream liaison in antiviral natural immunity. Upon viral invasion, the immediate response of STING protein leads to a series of changes in downstream proteins, which ultimately leads to an antiviral immune response in the form of proinflammatory cytokines and type I interferons, thus triggering an innate immune response, an adaptive immune response in vivo, and long-term protection of the host. In the field of antiviral natural immunity, it is particularly important to rigorously and sequentially probe the dynamic changes in the antiviral natural immunity connector protein STING caused by the entire anti-inflammatory and anti-pathway mechanism and the differences in upstream and downstream proteins. Traditionally, proteomics technology has been validated by detecting proteins in a 2D platform, for which it is difficult to sensitively identify changes in the nature and abundance of target proteins. With the development of mass spectrometry (MS) technology, MS-based proteomics has made important contributions to characterizing the dynamic changes in the natural immune proteome induced by viral infections. MS analytical techniques have several advantages, such as high throughput, rapidity, sensitivity, accuracy, and automation. The most common techniques for detecting complex proteomes are liquid chromatography (LC) and mass spectrometry (MS). LC-MS (Liquid Chromatography-Mass Spectrometry), which combines the physical separation capability of LC and the mass analysis capability of MS, is a powerful technique mainly used for analyzing the proteome of cells, tissues, and body fluids. To explore the combination of traditional proteomics techniques such as Western blotting, Co-IP (co-Immunoprecipitation), and the latest LC-MS methods to probe the anti-inflammatory pathway and the differential changes in upstream and downstream proteins induced by the antiviral natural immune junction protein STING.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4108-8_11DOI Listing

Publication Analysis

Top Keywords

antiviral natural
16
protein sting
12
natural immunity
12
downstream proteins
12
immune response
12
proteomics technology
8
western blotting
8
blotting co-ip
8
dynamic changes
8
upstream downstream
8

Similar Publications

Pathogenicity of tick-derived lymphocytic choriomeningitis virus in BALB/c mice.

BMC Vet Res

January 2025

Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, China.

Background: Lymphocytic choriomeningitis virus (LCMV) is a zoonotic pathogen primarily transmitted by rodents. Recently, LCMV has been detected in ticks from northeastern China; however, the pathogenicity of this virus in murine models remains to be elucidated.

Results: Here, we examined the tick-derived LCMV strain JX14 by inoculating BALB/c mice with 3.

View Article and Find Full Text PDF

Evaluation of bone mineral density and its influencing factors in patients infected with HIV under antiretroviral therapy.

BMC Infect Dis

January 2025

Department of Infectious Diseases, School of Medicine, Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

Background: Reduced Bone Mineral Density (BMD) has been linked to Human Immunodeficiency Virus (HIV) infection and treatment. There is a lack of information regarding the osteoporosis status of middle-aged patients with HIV in Iran, despite the fact that Antiretroviral Therapy (ART) is widely accessible.

Objective: The purpose of this cross-sectional study was to assess the BMD status and low BMD risk factors in patients with HIV under ART living in Iran.

View Article and Find Full Text PDF

The protective role of baicalin regulation of autophagy in cancers.

Cytotechnology

February 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.

Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy.

View Article and Find Full Text PDF

Recent Advances in Next-Generation Textiles.

Adv Mater

January 2025

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.

Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.

View Article and Find Full Text PDF

Cyclopenta[]benzopyran Derivatives and Limonoids from with Cytotoxic and Anti-DENV Activity.

J Nat Prod

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.

Eighteen cyclopenta[]benzopyran derivatives (- and -) and 10 limonoids (- and -) were identified from , including 10 undescribed compounds (-), all of which were identified by analysis of spectroscopic data, electronic circular dichroism calculations, and X-ray crystallography studies. Nine compounds displayed significant cytotoxic activity against three cancer cells, with IC values of 3-900 nM. Sixteen compounds demonstrated potent antiviral activity on the dengue virus, with selectivity index values between 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!