Transthyretin (TTR) is a tetrameric protein traditionally recognized for its role in transporting thyroxine and retinol. Recent research has highlighted the potential neuroprotective functions of TTR in the setting of Alzheimer's disease (AD), which is the most common form of dementia and is caused by the deposition of amyloid beta (Aβ) and the resulting cytotoxic effects. This paper explores the mechanisms of TTR protective action, including its interaction with Aβ to prevent fibril formation and promote Aβ clearance from the brain. It also synthesizes experimental evidence suggesting that enhanced TTR stability may mitigate neurodegeneration and cognitive decline in AD. Potential therapeutic strategies such as small molecule stabilizers of TTR are discussed, highlighting their role in enhancing TTR binding to Aβ and facilitating its clearance. By consolidating current knowledge and proposing directions for future research, this review aims to underscore the significance of TTR as a neuroprotective factor in AD and the potential implications for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04442-8DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
ttr
7
tetrameric transthyretin
4
transthyretin protective
4
protective factor
4
factor alzheimer's
4
disease transthyretin
4
transthyretin ttr
4
ttr tetrameric
4
tetrameric protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!