This study introduces a novel self-supervised learning method for single-frame subtraction and vessel segmentation in coronary angiography, addressing the scarcity of annotated medical samples in AI applications. We pretrain a U-Net model on a large dataset of unannotated coronary angiograms using an image-to-image translation framework, then fine-tune it on a limited set of manually annotated samples. The pretrained model excels at comprehensive single-frame subtraction, outperforming existing DSA methods. Fine-tuning with just 40 samples yields a Dice coefficient of 0.828 for vessel segmentation. On the public XCAD dataset, our model sets a new state-of-the-art benchmark with a Dice coefficient of 0.755, surpassing both unsupervised and supervised learning approaches. This method achieves robust single-frame subtraction and demonstrates that combining pretraining with minimal fine-tuning enables accurate coronary vessel segmentation with limited manual annotations. We successfully apply this approach to assist physicians in visualizing potential vascular stenosis sites during coronary angiography. Code, dataset, and a live demo will be available available at: https://github.com/newfyu/DeepSA .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349980PMC
http://dx.doi.org/10.1038/s41598-024-71063-5DOI Listing

Publication Analysis

Top Keywords

single-frame subtraction
12
vessel segmentation
12
coronary angiograms
8
coronary angiography
8
dice coefficient
8
coronary
5
pretrained subtraction
4
segmentation
4
subtraction segmentation
4
model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!