AI Article Synopsis

  • Hybrid metal halides are a new type of semiconductor with unique light-emitting properties, specifically involving free and self-trapped exciton emissions.
  • Researchers successfully transformed the broader self-trapped exciton emission into sharp free exciton emission in a specific hybrid metal halide using high-pressure techniques.
  • The study highlights that manipulating pressure can control excitonic behavior, showing that wider ribbon structures (n > 2) are crucial for achieving desired exciton emissions without needing chemical adjustments.

Article Abstract

Hybrid metal halides represent a novel type of semiconductor light emitters with intriguing excitonic emission properties, including free exciton emission and self-trapped exciton emission. Achieving precise control over these two excitonic emissions in hybrid metal halides is highly desired yet remains challenging. Here, the complete transformation from intrinsically broadband self-trapped exciton emission to distinctively sharp free exciton emission in a quasi-one-dimensional hybrid metal halide (CHN)[PbBr]·6Br with a ribbon width of n = 4, is successfully achieved based on high-pressure method. During compression, pressure-induced phonon hardening continuously reduces exciton-phonon coupling, therefore suppressing excitonic localization and quenching the original self-trapped exciton emission. Notably, further compression triggers excitonic delocalization to induce intense free exciton emission, accompanied with reduced carrier effective masses and improved charge distribution. Controlled high-pressure investigations indicate that the ribbon width of n > 2 is necessary to realize excitonic delocalization and generate free exciton emissions in similar quasi-one-dimensional hybrid metal halides. This work presents an important photophysical process of excitonic transitions from self-trapped exciton emission to free exciton emission in quasi-one-dimensional hybrid metal halides without chemical regulation, promoting the rational synthesis of hybrid metal halides with desired excitonic emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349761PMC
http://dx.doi.org/10.1038/s41467-024-51836-2DOI Listing

Publication Analysis

Top Keywords

exciton emission
36
free exciton
24
hybrid metal
24
self-trapped exciton
20
metal halides
20
quasi-one-dimensional hybrid
16
emission quasi-one-dimensional
12
exciton
11
emission
10
excitonic emissions
8

Similar Publications

The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.

View Article and Find Full Text PDF

Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence.

Angew Chem Int Ed Engl

January 2025

Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.

View Article and Find Full Text PDF

How Structure and Hydrostatic Pressure Impact Excited-State Properties of Organic Room-Temperature Phosphorescence Molecules: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

Organic room-temperature phosphorescence (RTP) emitters with long lifetimes, high exciton utilizations, and tunable emission properties show promising applications in organic light-emitting diodes (OLEDs) and biomedical fields. Their excited-state properties are highly related to single molecular structure, aggregation morphology, and external stimulus (such as hydrostatic pressure effect). To gain a deeper understanding and effectively regulate the key factors of luminescent efficiency and lifetime for RTP emitters, we employ the thermal vibration correlation function (TVCF) theory coupled with quantum mechanics/molecular mechanics (QM/MM) calculations to investigate the photophysical properties of three reported RTP crystals (Bp-OEt, Xan-OEt, and Xan-OMe) with elastic/plastic deformation.

View Article and Find Full Text PDF

Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures.

Nano Lett

January 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.

View Article and Find Full Text PDF

Complexity in the Photofunctionalization of Single-Wall Carbon Nanotubes with Hypochlorite.

ACS Nano

January 2025

Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States.

The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!