A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

US-based radiomics analysis of different machine learning models for differentiating benign and malignant BI-RADS 4A breast lesions. | LitMetric

US-based radiomics analysis of different machine learning models for differentiating benign and malignant BI-RADS 4A breast lesions.

Acad Radiol

Division of Interventional Ultrasound, Department of Medical Ultrasonics, Foshan First People's Hospital, 81 Lingnan North Road, Foshan 528000, Guangdong, China (J.Y., Y.C., Y.Q., Z.L., Y.X., Y.H., W.H.). Electronic address:

Published: August 2024

AI Article Synopsis

  • The study aimed to evaluate how well different radiomics models can identify whether BI-RADS 4A lesions are benign or malignant, using a large patient cohort for analysis.
  • Researchers extracted 1561 radiomic features from ultrasound images, narrowing it down to 36 significant features, and developed various models (like logistic regression and support vector machines) to test their accuracy.
  • The best-performing model, which combined radiomic and clinical data, significantly outperformed individual radiologist evaluations, suggesting it could provide a reliable, non-invasive method for diagnosis.

Article Abstract

Rationale And Objectives: To investigate and authenticate the effectiveness of various radiomics models in distinguishing between benign and malignant BI-RADS 4A lesions.

Methods: A total of 936 patients with pathologically confirmed 4A lesions were included in the study (training cohort: n = 655; test cohort: n = 281). Radiomic features were derived from greyscale US images. Following dimensionality reduction and feature selection, radiomics models were developed using logistic regression (LR), support vector machine (SVM), random forest (RF), eXtreme gradient boosting (XGBoost) and multilayer perceptron (MLP) algorithms. Univariate and multivariable logistic regression analyses were employed to investigate clinical-radiological characteristics and determine variables for creating a clinical model. Five combined models integrating radiomic and clinical parameters were constructed by using each algorithm, and comparison with radiologists' performance was performed. SHapley Additive exPlanations (SHAP) approach was used to elucidate the radiomic model by ranking the significance of features based on their contribution to the evaluation.

Results: A total of 1561 radiomic features were extracted. Thirty-six features were deemed significant by dimensionality reduction and selection. The radiomic models showed good performance with AUCs of 0.829-0.945 in training cohort; and 0.805-0.857 in test cohort. The combined model developed by using LR showed the best performance (AUC, training cohort: 0.909; test cohort: 0.905), which is superior to radiologists' performance. Decision curve analysis (DCA) of this combined model indicated better clinical efficacy than clinical and radiomic models.

Conclusions: The combined model integrating radiomic and clinical features demonstrated excellent performance in differentiating between benign and malignant 4A lesions. It may offer a non-invasive and efficient approach to aid in clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.08.024DOI Listing

Publication Analysis

Top Keywords

benign malignant
12
training cohort
12
test cohort
12
combined model
12
differentiating benign
8
malignant bi-rads
8
radiomics models
8
radiomic features
8
dimensionality reduction
8
logistic regression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!