Background/aim: Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells.
Materials And Methods: We searched for pathways affected by GGCT overexpression in mouse embryonic fibroblasts NIH-3T3 by comprehensive gene expression analysis. Knockdown of GGCT and overexpression of desert hedgehog (DHH), a representative ligand of the pathway, were performed in glioblastoma stem cells derived from a mouse glioblastoma model.
Results: GGCT overexpression activated the hedgehog pathway. Knockdown of GGCT inhibited proliferation of glioblastoma stem cells and reduced expression of DHH and the downstream target GLI family zinc finger 1 (GLI1). DHH overexpression significantly restored the growth-suppressive effect of GGCT knockdown.
Conclusion: High GGCT expression is important for expression of DHH and activation of the hedgehog pathway, which is required to maintain glioblastoma stem cell proliferation. Therefore, inhibition of GGCT function may be useful in suppressing stemness of glioblastoma stem cells accompanied by activation of the hedgehog pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363923 | PMC |
http://dx.doi.org/10.21873/cgp.20465 | DOI Listing |
Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, PR China. Electronic address:
Three-dimensional(3D) cell culture systems provide a larger space for cell proliferation, which is crucial for simulating cellular behavior and drug responses in the tumor microenvironment. In this study, we developed a novel 3D co-culture system for cell interactions, utilizing a commercialized bioreactor-microcarrier system. Mesenchymal stem cells (MSCs) were extracted via enzymatic digestion, and markers CD105 and CD31 were identified.
View Article and Find Full Text PDFCancer Med
January 2025
Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon.
Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.
View Article and Find Full Text PDFPurpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!