Rational design of a flavoenzyme for aerobic nicotine catabolism.

mBio

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Published: October 2024

Unlabelled: Enzymatic therapy with nicotine-degrading enzyme is a new strategy in treating nicotine addiction, which can reduce nicotine concentrations and weaken withdrawal in the rat model. However, when O is used as the electron acceptor, no satisfactory performance has been achieved with one of the most commonly studied and efficient nicotine-catabolizing enzymes, NicA2. To obtain more efficient nicotine-degrading enzyme, we rationally designed and engineered a flavoenzyme Pnao, which shares high structural similarity with NicA2 (RMSD = 1.143 Å) and efficiently catalyze pseudooxynicotine into 3-succinoyl-semialdehyde pyridine using O. Through amino acid alterations with NicA2, five Pnao mutants were generated, which can degrade nicotine in Tris-HCl buffer and retain catabolic activity on its natural substrate. Nicotine-1'--oxide was identified as one of the reaction products. Four of the derivative mutants showed activity in rat serum and Trp220 and Asn224 were found critical for enzyme specificity. Our findings offer a novel avenue for research into aerobic nicotine catabolism and provide a promising method of generating additional nicotine-catalytic enzymes.

Importance: Nicotine, the main active substance in tobacco, results in cigarette addiction and various diseases. There have been some attempts at using nicotine oxidoreductase, NicA2, as a therapeutic for nicotine cessation. However, it uses cytochrome c as it is electron acceptor, which is impractical for therapeutic use compared with using O2 as an oxidant. Thus, amino acid alteration was performed on Pnao using NicA2 as model. Five of the mutants generated degraded nicotine at a rate similar to NicA2, and one of the catabolic compounds was identified as nicotine-1'-N-oxide. Our research highlights a new direction in developing enzymes that efficiently catabolize nicotine without co-enzymes and suggests that structure-similar human original MAOA (or B) may assist with nicotine cessation after being engineered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481913PMC
http://dx.doi.org/10.1128/mbio.02050-24DOI Listing

Publication Analysis

Top Keywords

nicotine
11
aerobic nicotine
8
nicotine catabolism
8
nicotine-degrading enzyme
8
electron acceptor
8
amino acid
8
mutants generated
8
nicotine cessation
8
nica2
6
rational design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!