Nest characteristics are highly variable in the Passeriformes, but the macroevolutionary patterns observable for birds in general are not necessarily valid for specific families, suggesting that both global and within-family studies are needed. Here, we used phylogenetic comparative methods to address the evolutionary patterns of nest type, nest site and habitat in the Troglodytidae, a passerine group with diversified nest and habitat characteristics. The common ancestor of the Troglodytidae likely constructed enclosed nests within sheltered sites (cavity or crevice), but the radiation of the group was characterized by (i) shifts to exposed nest sites (vegetation) with retention of enclosed nests or (ii) retention of sheltered sites with nest simplification (cup nests). Nest site and nest type presented strong phylogenetic conservatism and evolved interdependently, while habitat was poorly correlated with nest evolution. A phylogenetic mixed modelling approach showed that sheltered nest sites were associated with small body size, likely to avoid competition with other animals for these places. With these results, we improve the understanding of nest character evolution in the Troglodytidae and reveal evolutionary aspects not observed so far for passerine birds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349434 | PMC |
http://dx.doi.org/10.1098/rsbl.2024.0053 | DOI Listing |
Pest Manag Sci
January 2025
Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain.
Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Institute of Biology, University of Opole, Oleska 22, 45-052 Opole, Poland.
Nest sites are important for ants, as the nests provide refuge against enemies and ensure optimal conditions for the brood development. As the construction of a nest is a time and energy consuming activity, many ant species dwell in ready-for-use cavities. For them, choosing a good nest site is important, as the quality of nest site could affect factors such as the energy allocation and production of sexual individuals.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.
View Article and Find Full Text PDFLaryngoscope
January 2025
Department of Otology and Skull Base Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
Objective: Endolymphatic sac tumors (ELSTs), as rare low-grade neoplasms, are primarily treated with surgery. This study analyzes the characteristics of tumor-infiltrating leukocytes (TILs) in ELSTs and their relationships with clinical features to explore the potential for immunotherapy in ELSTs.
Methods: Clinical data and tumor specimens of 10 ELSTs patients who underwent surgery were retrieved.
Ecol Evol
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.
Recognising and rejecting parasitic eggs is one of the most common anti-parasitism strategies used by host birds. However, the egg rejection of some hosts exhibits behavioural plasticity. To investigate whether the egg rejection behaviour of host birds changes after encountering a parasitism event, we conducted egg rejection experiments on the locally most common host of the common cuckoo (), the grey bushchat () in Yunnan, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!