Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a computational model of networked neurons developed to study the effect of temperature on neuronal synchronization in the brain in association with seizures. The network consists of a set of chaotic bursting neurons surrounding a core tonic neuron in a square lattice with periodic boundary conditions. Each neuron is reciprocally coupled to its four nearest neighbors via temperature dependent gap junctions. Incorporating temperature in the gap junctions makes the coupling stronger when temperature rises, resulting in higher likelihood for synchrony in the network. Raising the temperature eventually makes the network elicit waves of synchronization in circular ripples that propagate from the center outwardly. We suggest this process as a possible underlying mechanism for seizures induced by elevated brain temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!