Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (r) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2024.108175 | DOI Listing |
Viruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFViruses
December 2024
Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
Hepatitis C virus (HCV) infection is a significant risk factor for liver cirrhosis and hepatocellular carcinoma (HCC). Traditionally, the primary prevention strategy for HCV-associated HCC has focused on removing infection through antiviral regimes. Currently, highly effective direct-acting antivirals (DAAs) offer extraordinary success across all patient categories, including cirrhotics.
View Article and Find Full Text PDFViruses
December 2024
Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide 5000, Australia.
Background: Point-of-care hepatitis C virus (HCV) testing streamlines testing and treatment pathways. In this study, we established an HCV model of care in a homelessness service by offering antibody and RNA point-of-care testing.
Methods: A nurse and peer-led HCV model of care with peer support were implemented between November 2021 and April 2022 at a homelessness service in Adelaide, Australia.
Viruses
November 2024
Laboratory Branch, Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.
View Article and Find Full Text PDFViruses
November 2024
Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication-competent HIV-1 subtype C reporter virus expressing mGreenLantern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!