A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Massive fabrication of functional hepatic cancer spheroids by micropatterned GelMA hydrogel chip for drug screening. | LitMetric

Massive fabrication of functional hepatic cancer spheroids by micropatterned GelMA hydrogel chip for drug screening.

Colloids Surf B Biointerfaces

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China. Electronic address:

Published: December 2024

Since hepatic cancer incidence and mortality continue to grow worldwide, it is necessary to develop the biomimetic tumor models for drug development and tumor therapeutics. Cellular spheroids as an excellent simple 3D model can bridge the gap between 2D cell culture and live tissue. In this study, we proposed a biological methacrylated gelatin (GelMA) hydrogel-based microplatform for the massive generation of hepatocellular spheroids and downstream investigation of drug resistance. Micropatterned GelMA hydrogel microwell chip (GHM-chip) with tunable array was easily achieved in standard 24-culture well plates through the micro-molding fabrication strategy. The fabricated GHM-chip induced multicellular self-assembly behavior within the defined topography and further formed spheroidal structure. By regulating cell seeding density and designing microwell size, uniform hepatic cancer spheroids with tunable diameters were obtained in a simplicity, stability and controllable manner. In addition, the screening chemotherapy study of anti-cancer drug was completed through non-destructive recovery of spheroids from the GHM-chip. Beyond that, the recovered functional spheroids have potential application value in various biomedical fields such as tumor biology, pharmacology, and tissue microengineering. Finally, the proposed GHM-chip incorporated into standard cell culture plates with easy to manufacture and operate properties, may be an efficient culture microplatform for cancer research applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114171DOI Listing

Publication Analysis

Top Keywords

hepatic cancer
12
cancer spheroids
8
micropatterned gelma
8
gelma hydrogel
8
cell culture
8
spheroids
6
massive fabrication
4
fabrication functional
4
functional hepatic
4
cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!