Currently, most assisted reproduction units transfer a single embryo to avoid multiple pregnancies. Embryologists must select the embryo to be transferred from a cohort produced by a couple during a cycle. This selection process should be accurate, non-invasive, inexpensive, reproducible, and available to in vitro fertilization (IVF) laboratories worldwide. Embryo selection has evolved from static and morphological criteria to the use of morphokinetic embryonic characteristics using time-lapse systems and artificial intelligence, as well as the genetic study of embryos, both invasive with preimplantation genetic testing for aneuploidies (PGT-A) and non-invasive (niPGT-A). However, despite these advances in embryo selection methods, the overall success rate of IVF techniques remains between 25 and 30%. This review summarizes the different methods and evolution of embryo selection, their strengths and limitations, as well as future technologies that can improve patient outcomes in the shortest possible time. These methodologies are based on procedures that are applied at different stages of embryo development, from the oocyte to the cleavage and blastocyst stages, and can be used in laboratory routine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcmed.2024.103068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!