Duck-derived lactic acid bacteria (DDL) are a crucial beneficial bacterium in the intestines, contributing significantly to the health of ducks. However, the mechanism by which these DDL improves the growth performance and meat quality of Muscovy duck is not clear. In this study, A total of 800 male Muscovy ducks, initially weighing 50.15 ± 5.37 g, were randomly allocated into 4 groups, each with 4 replicates, consisting of 50 ducks per replicate. The control group consumed deep well water, while the experimental groups were given water supplemented with 1%, 3%, and 5% DDL (1.59×10 CFU/mL). The study duration was 70 d. The results revealed that Muscovy ducks drinks with the DDL significant reduced the feed conversion ratio (FCR) (P < 0.05) and increased the sweetness and richness of duck meat, among which the 5% drinking group has the most significant difference. Further study finding, the DDL significantly increased the height of villi, the ratio of villi height/crypt depth (V/C) on jejunum and colon, and the ratio of acidic mucus, neutral mucus, and glycogen to tissue area in both the duodenum and ileum of Muscovy ducks, and significantly decreased the tunel positive cells. Moreover, DDL significantly enhanced the abundance of genus beneficial bacterium (Bacillus, lentilactobacillus, Bacterodies, Lactobacillus) on duodenum and ileum. Additionally, drink with the DDL elevated the level of IgG in blood and the immune indices of the thymus and the fabricius bursa (P<0.05). Meanwhile, the meat composition analysis demonstrated that Muscovy duck drinks with the DDL raised the level of the saturated fatty acid rate(C12:0), and polyunsaturated fatty acid (C18:2 n-6 and C20:5 n-3,), and the monounsaturated (C18:1 n-7, and C18:1 n-9). Furthermore, correlation analysis finding that the growth performance of Muscovy ducks was positively correlated with the height of villi, the ratio of villi height/crypt depth (V/C), the abundance of genus beneficial bacterium. And the meat quality of Muscovy ducks has positively correlated with genus beneficial bacterium in intestinal, glutamic acid, saturated fatty acid rate and polyunsaturated fatty acid. This finding suggest DDL is an effective strategy to improve the growth performance and meat quality of Muscovy ducks by gut histomorphology and intestinal microflora.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395760PMC
http://dx.doi.org/10.1016/j.psj.2024.104195DOI Listing

Publication Analysis

Top Keywords

muscovy ducks
16
duck-derived lactic
8
lactic acid
8
acid bacteria
8
growth performance
8
performance meat
8
meat quality
8
beneficial bacterium
8
duodenum ileum
8
ddl
7

Similar Publications

Transcriptome analysis reveals the regulatory mechanism of myofiber development in male and female black Muscovy duck at different ages.

Front Vet Sci

November 2024

Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi Poultry Engineering Technology Research Center, Jiangxi Poultry Breeding Engineering Laboratory, Nanchang, Jiangxi, China.

Article Synopsis
View Article and Find Full Text PDF

miR-317 regulates the proliferation and apoptosis of duck follicle granulosa cells by targeting VIPR1.

Poult Sci

November 2024

Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou, Fujian 350013, PR China. Electronic address:

VIPR1 can specifically bind VIP, a PRL release factor, which promotes the secretion of PRL from the pituitary gland, and participates in the regulation of bird nesting behavior. The purpose of this study was to investigate the effects of miR-317 overexpression or silencing on VIPR1 gene and protein expression in duck follicle granulosa cells. The ovaries of Muscovy ducks were collected during the nesting and laying periods, and histological differences were analyzed via HE staining.

View Article and Find Full Text PDF

Infection with novel duck reovirus induces stress granule and methylation-mediated host translational shutoff in Muscovy ducklings.

Commun Biol

November 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.

The recently identified novel duck reovirus (NDRV) is a waterfowl reovirus that can seriously harm or kill various waterfowl species. However, how NDRV interacts with host cells in Muscovy ducklings beyond the typical pathogenesis resulting from a viral infection is unknown. The current study examined the global translation efficiency of the Fabricius bursa of Muscovy ducklings infected with NDRV HN10 using mass spectrometry and ribosome footprint sequencing.

View Article and Find Full Text PDF

Fowl adenovirus serotype 4 (FAdV-4) is the main causative agent of hydropericardium hepatitis syndrome (HHS), which has resulted in huge economic losses to the poultry industry in recent years. Hence, a rapid and simple visual detection method is needed for identification of FAdV-4. In this study, three multienzyme isothermal rapid amplification (MIRA) assays, basic MIRA, MIRA-qPCR and MIRA-LFD were developed for detection of FAdV-4.

View Article and Find Full Text PDF

Analysis of genetic structure and identification of important genes associated with muscle growth in Fujian Muscovy duck.

Poult Sci

December 2024

General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003. Electronic address:

Fujian Muscovy duck is a well-known meat waterfowl in Fujian Province due to its high meat production, superior breeding potential, and strong resistance. To fully explore the genetic characteristics of these advantages, Fujian black Muscovy duck and white Muscovy duck were used for whole-genome re-sequencing and transcriptome analyses. Population structure analysis showed significant differentiation between the two feather strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!