Novel insights into the mechanisms of seasonal cyclicity of testicles by proteomics and transcriptomics analyses in goose breeder lines.

Poult Sci

College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. Electronic address:

Published: November 2024

Spermatogenesis is a crucial indicator of geese reproduction performance and production. The testis is the main organ responsible for sperm production, and the egg-laying cycle in geese is a complex physiological process that demands precise orchestration of hormonal cues and cellular events within the testes, however, the seasonal changes in the transcriptomic and proteomic profiles of goose testicles remain unclear. To explore various aspects of the mechanisms of the seasonal cyclicity of testicles in different goose breeds, in this study, we used an integrative transcriptomic and proteomic approach to screen the key genes and proteins in the testes of 2 goose males, the Hungarian white goose and the Wanxi white goose, at 3 different periods of the laying cycle: beginning of laying cycle (BLC), peak of laying cycle (PLC), and end of laying cycle (ELC). The results showed that a total of 9,273 differentially expressed genes and 4,543 differentially expressed proteins were identified in the geese testicles among the comparison groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the DEGs, in the comparison groups, were mainly enrichment in metabolic pathways, neuroactive ligand-receptor interaction, cyctokine-cyctokine receptor interaction, calcium signaling pathway, apelin signaling pathway, ether lipid metabolism, cysteine, and methionine metabolism. While the DEPs, in the 3 comparison groups, were mainly involved in the ribosome, metabolic pathways, carbon metabolism, proteasome, endocytosis, lysosome, regulation of actin cytoskeleton, oxidative phosphorylation, nucleocytoplasmic transport, and tight junction. The protein-protein interaction network analysis (PPI) indicated that selected DEPs, such as CHD1L, RAB18, FANCM, TAF5, TSC1/2, PHLDB2, DNAJA2, NCOA5, DEPTOR, TJP1, and RAPGEF2, were highly associated with male reproductive regulation. Further, the expression trends of 4 identified DEGs were validated by qRT-PCR. In conclusion, this work offers a new perspective on comprehending the molecular mechanisms and pathways involved in the seasonal cyclicity of testicles in the Hungarian white goose and the Wanxi white goose, as well as contributing to improving goose reproductive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11396066PMC
http://dx.doi.org/10.1016/j.psj.2024.104213DOI Listing

Publication Analysis

Top Keywords

white goose
16
laying cycle
16
seasonal cyclicity
12
cyclicity testicles
12
comparison groups
12
goose
9
mechanisms seasonal
8
transcriptomic proteomic
8
hungarian white
8
goose wanxi
8

Similar Publications

Larvae Meal (HILM) has been observed to enhance growth performance and immune function, yet the effects and mechanisms in geese remain less understood. Experiment I included 64 Sichuan White Geese to investigate the optimal additive amount of HILM in diet, and experiment II included 32 Sichuan White Geese to access serum immunoglobulin, spleen immune-related genes, intestinal morphology and gut microbiota at the optimal additive amount of HILM. The results showed that the addition of 1% HILM significantly increased the ADG of Sichuan White Geese ( < 0.

View Article and Find Full Text PDF

Characterization and functional analysis of a novel goose-type lysozyme from teleost Sebastes schlegelii with implications for antibacterial defense and immune cell modulation.

Comp Biochem Physiol B Biochem Mol Biol

December 2024

School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266109, China. Electronic address:

Lysozymes are crucial enzymes involved in the innate immune response against bacterial pathogens. In this study, we identified and characterized a goose-type lysozyme gene (SsLyG) from the black rockfish Sebastes schlegelii, an economically important aquaculture species. The deduced amino acid sequence of SsLyG contains 495 residues, which inculded a signal peptide, an immunoglobulin domain, and a goose egg-white lysozyme (GEWL) domain.

View Article and Find Full Text PDF

Molecular mechanisms underlying age-dependent effects of rearing system on the goose testicular development and semen quality.

Poult Sci

November 2024

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China.

As an important non-genetic factor, the rearing system has significant effects on male poultry reproductive system development. However, compared with other poultry such as chickens and ducks, less is known about the effects and mechanisms of rearing system on the gander reproductive organ development and semen quality. In the present study, the testicular morphological, histological, and transcriptomic responses of three goose breeds to the two dryland rearing systems (i.

View Article and Find Full Text PDF

Identification of Single Nucleotide Polymorphisms Through Genome-Wide Association Studies of pH Traits in Goose Meat.

Biology (Basel)

October 2024

Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing 402460, China.

The genetic regulation of goose meat quality traits remains relatively unexplored, and the underlying mechanisms are yet to be elucidated. This study aims to employ single nucleotide polymorphism (SNP) genotyping in conjunction with genome-wide association studies (GWAS) to investigate critical candidate regions and genes associated with the pH trait of meat in Sichuan white geese. A cohort of 203 healthy male Sichuan white geese was randomly selected and slaughtered at 70 days of age.

View Article and Find Full Text PDF

Ovarian development significantly influences the laying performance of geese. In this study, the transcriptome analysis was conducted on the ovarian tissues of Wanxi White Geese during the pre-laying (KL), laying (CL), and ceased-laying period (XL). Short Time-series Expression Miner (STEM) analysis and miRNA-mRNA regulatory network construction were performed to identify the key genes and miRNAs regulating laying traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!