Promoting microalgal biofilm formation by crushed oyster shell-hydroxyapatite layer on micropatterned aluminum coating for heavy metal ions removal.

Colloids Surf B Biointerfaces

Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: November 2024

Microalgal biomass has shown inspiring potential for the heavy metal removal from wastewater, and forming microalgal biofilm is one of the sustainable methods for the microalgal biomass production. Here we report the formation of microalgal biofilm by accelerated colonization of typical algae Chlorella on thermal sprayed aluminum (Al) coatings with biologically modified surfaces. Micro-patterning surface treatment of the Al coatings promotes the attachment of Chlorella from 6.31 % to 17.51 %. Further enhanced algae attachment is achieved through liquid flame spraying a bioactive crushed oyster shell-hydroxyapatite (CaCO-HA) composite top layer on the micropatterned coating, reaching 46.03-49.62 % of Chlorella attachment ratio after soaking in Chlorella suspension for 5 days. The rapidly formed microalgal biofilm shows an adsorption ratio of 95.43 % and 85.23 % for low concentration Zn and Cu in artificial seawater respectively within 3 days. Quick interaction has been realized between heavy metal ions and the negatively-charged extracellular polymeric substances (EPS) matrix existing in the biofilm. Fourier transform infrared spectroscopy (FTIR) results indicate that both carboxyl and phosphoryl groups of biofilms are crucial in the adsorption of Cu and the adsorption of Zn is due to the hydroxyl and phosphate groups. Meanwhile, the biofilm could act as a barrier to protect Chlorella against the attack of the heavy metal ions with relatively low concentrations in aqueous solution. The route of quick cultivating microalgal biofilm on marine structures through constructing biological layer on their surfaces would give insight into developing new techniques for removing low concentration heavy metal ions from water for environmental bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114168DOI Listing

Publication Analysis

Top Keywords

microalgal biofilm
20
heavy metal
20
metal ions
16
crushed oyster
8
oyster shell-hydroxyapatite
8
layer micropatterned
8
microalgal biomass
8
low concentration
8
biofilm
7
microalgal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!