While uranium is the most extensively studied actinide in terms of chemical properties, there remains much to be explored about its fundamental chemistry. Organometallic and organoactinide chemistry first emerged in the 1950s with research that found inspiration from transition-metal chemistry with the synthesis and characterization of uranocene, expanding new opportunities for organoactinide chemistry. Since then, a significant amount of research has pursued many avenues characterizing the fundamental nature of the f orbitals and their modes of bonding as well as their potential in catalysis. Uranium(III/IV) arene complexes dominate much of uranium organometallic chemistry, with bonding interactions stabilized by δ-back-bonding. Recent additions to this area of chemistry include the first U and new additions of U organouranium compounds. Uranium-transition metal complexes are still rare and maintain U oxidation states, with variable bond lengths determining the transition-metal oxidation state. Resultant reactivities are discussed as synthetic complexes, and unique bonding and coordination motifs are highlighted. This Viewpoint will focus on significant developments in uranium chemistry from the last 15 years while considering key areas for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02173 | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China. Electronic address:
Developing biomass-based adsorbents with superior uranium uptake performance is imperative yet challenging for the sustainable development of nuclear energy. Herein, we constructed a novel lignin-based adsorbent (DLP@PAO) with dual functional groups and enhanced structural stability via ingenious integration of lignin and polyamidoxime. The two-step modification strategy was innovatively employed to phosphorylate lignin, significantly enhancing the phosphorylation efficiency and achieving an over eight-fold increase in the U(VI) uptake capacity of lignin.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
The limited availability of uranium (U) resources poses significant challenges to the advancement of nuclear energy. Recycling uranium from spent fuel is critical, but the coexistence of lanthanides (Ln) complicates the extraction process significantly. Here, we present an N/O ligand, ()-'-(pyridin-2-ylmethylene) picolinohydrazide (), designed for the selective recovery of U(VI) over Ln(III/IV) in acidic environments.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China. Electronic address:
Applicable to convert soluble U(VI) into the less mobile U(IV) form, the photocatalytic process is widely regarded as an efficient solution to uranium pollution. In the present study, BiOI/g-CN (BICN) composites were produced through uncomplicated hydrothermal synthesis, followed by U(VI) photocatalytic reduction. Batch experiments were conducted to demonstrate the exceptional capability of BICN to address uranium contamination.
View Article and Find Full Text PDFTalanta
January 2025
National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan; Department of Physics, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Natural uranium isotopes have extremely long half-lives; therefore, analytical methods based on the number of atoms, such as X-ray fluorescence (XRF) analysis, are suitable for uranium detection. However, XRF measurements cannot be used to detect the major isotopes of americium when present in amounts barely detectable using radiation measurements, owing to their relatively short half-lives. Because of α-decay-induced internal conversion, where orbital electrons are emitted instead of γ-rays, these nuclides emit characteristic X-rays.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!