This study aims to solve the problem of springback control of aluminum alloy components in the rolling process, and the method of combining experiment and simulation is adopted. Firstly, a series of aluminum alloy samples are designed, and the four-axis flexible bending machine is used for precision roll bending. Secondly, the three-dimensional (3D) shape change data of the workpiece before and after roll bending is monitored and recorded in real-time by a high-precision 3D scanner. Meanwhile, aiming at different rolling process parameters of each group (including roll bend speed, feed rate, pre-deformation amount, mold curvature radius, and other factors), advanced finite element software is used to carry out detailed simulation and calculations. In addition, the coincidence is compared and analyzed between the actual experiment results and the simulation prediction. The stress-strain distribution and springback evolution of aluminum alloy during roll bending are described accurately. The experimental and simulation results show that the springback rate of aluminum alloy fluctuates in the range of 5% to 15% after four-axis flexible roll bending, and the specific springback value is influenced by various process parameters. For example, under the premise of keeping other conditions unchanged, when the roll bending speed is increased from 30mm/s to 60mm/s, the springback rate shows an upward trend of about 3%. By increasing the feed rate by 20%, an average decrease of about 7% in springback quantity is observed. It can be seen that the increase in roll bending speed can aggravate the springback phenomenon, and the appropriate increase in feed rate can play a certain role in restraining the springback. Further analysis shows that the choice of the mold curvature radius and pre-deformation amount also has a decisive influence on the springback characteristics. There is a nonlinear relationship between the two parameters and the amount of springback. Changing these two parameters in a specific range can effectively regulate the springback effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349108PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306604PLOS

Publication Analysis

Top Keywords

roll bending
28
aluminum alloy
20
springback
12
four-axis flexible
12
feed rate
12
springback characteristics
8
roll
8
flexible roll
8
bending
8
rolling process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!