Platelets contribute to a variety of physiological processes, including inflammation, sepsis, and cancer. However, because of their primary role in hemostasis, platelet transfusions are largely restricted to managing thrombocytopenia and bleeding. One way to expand the utility of platelet transfusions would be to genetically engineer donor platelets with new or enhanced functions. We have previously shown that lipid nanoparticles containing mRNA (mRNA-LNP) can be used to genetically modify authentic platelets in a nonclinical crystalloid solution. Currently, platelets collected for transfusion are stored in plasma or in plasma supplemented with platelet additive solution (PAS) at supraphysiological concentrations at room temperature, or at 4°C if intended for use in acute hemorrhage. Here, we describe a new plasma-optimized mRNA-LNP for transfecting platelets directly in plasma and plasma supplemented with PAS that is scalable to physiological and supraphysiological platelet concentrations. Transfecting platelets in clinical solutions with mRNA-LNP does not affect aspects of in vitro physiology, and transfected platelets are storable. The compatibility of this transfection system with current clinical practices could enable future mRNA-LNP-based platelet products and cell therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood.2024024405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!