High-fidelity 3D cardiac CT for mitral valve prolapse.

Int J Cardiovasc Imaging

Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan.

Published: August 2024

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10554-024-03230-8DOI Listing

Publication Analysis

Top Keywords

high-fidelity cardiac
4
cardiac mitral
4
mitral valve
4
valve prolapse
4
high-fidelity
1
mitral
1
valve
1
prolapse
1

Similar Publications

The preclinical evaluation of drug-induced cardiotoxicity is critical for developing novel drug, helping to avoid drug wastage and post-marketing withdrawal. Although human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and the engineered heart organoid have been used for drug screening and mimicking disease models, they are always limited by the immaturity and lack of functionality of the cardiomyocytes. In this study, we constructed a Cardiomyocytes-on-a-Chip (CoC) that combines micro-grooves (MGs) and circulating mechanical stimulation to recapitulate the well-organized structure and stable beating of myocardial tissue.

View Article and Find Full Text PDF

Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).

View Article and Find Full Text PDF

Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

Nat Commun

January 2025

Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.

View Article and Find Full Text PDF
Article Synopsis
  • Soft conductive gels are crucial for epidermal electronics but struggle with uneven skin surfaces, especially where there's hair or mechanical stress.
  • This study presents an in-situ biogel that can shift between liquid and solid states in just 3 minutes using a temperature change, featuring a strong design that enhances its performance.
  • The biogel boasts impressive properties like high tensile strength, skin compatibility, and adhesive strength, making it suitable for applications like exercise data tracking, muscle recovery monitoring, and cardiac signal observation.
View Article and Find Full Text PDF

In silico trials for drug safety assessment require many high-fidelity 3D cardiac simulations to predict drug-induced QT interval prolongation, which is often computationally prohibitive. To streamline this process, we developed sex-specific emulators for a fast prediction of QT interval, trained on a dataset of 900 simulations. Our results show significant differences between 3D and 0D single-cell models as risk levels increase, underscoring the ability of 3D modeling to capture more complex cardiac responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!