This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-031-64839-7_4 | DOI Listing |
This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620, USA.
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury.
View Article and Find Full Text PDFChaos
December 2024
Control Theory Department, Lobachevsky University, Gagarin ave, 23, Nizhny Novgorod 603022, Russia.
We study a bifurcation scenario that corresponds to the transition from bursting activity to spiking in a phenomenological model of neuron-astrocyte interaction in neuronal populations. In order to do this, we numerically obtain one-dimensional Poincaré return map and highlight its bifurcation structure using an analytically constructed piecewise smooth model map. This map reveals the existence of a cascade of period-adding bifurcations, leading to a bursting-spiking transition via blue sky catastrophe.
View Article and Find Full Text PDFNeural Netw
February 2025
Department of Engineering Management, University of Antwerp, Antwerp, Belgium. Electronic address:
Among various types of memory, working memory (WM) plays a crucial role in reasoning, decision-making, and behavior regulation. Neuromorphic computing is a well-established engineering approach that offers promising avenues for advancing our understanding of WM processes by mimicking the structure and operation of the human brain using electronic technology. In this work, a digital neuromorphic system is proposed and then implemented in hardware to illustrate the real-time WM process based on the spiking neuron-astrocyte network (SNAN).
View Article and Find Full Text PDFJ Ethnopharmacol
November 2024
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China. Electronic address:
Ethnopharmacological Relevance: Armadillidium vulgare Latreille (AV), the dried body of pillbug, was originally described in Shennong's Classic of Materia Medica. As a common analgesic in animal-based traditional Chinese medicine, it is mainly used to relieve pain, promoting diuresis, relieving fatigue and so on. Our work demonstrated that AV could alleviate various types of acute and chronic pain including neuropathic pain (NP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!