Effects of Heteroatom Doping on the Electrochemical Hydrogen Uptake and Release of Pd-Decorated Reduced Graphene Oxide.

ACS Appl Mater Interfaces

Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

Published: September 2024

Heteroatom doping has been widely recognized as a key strategy for improving the electrochemical properties of graphene-based materials for hydrogen storage. However, a precise understanding of how heteroatom doping influences catalytic performance, specifically regarding the intricate effects of doping-induced electron redistribution, has been lacking. Here, we report on a comprehensive exploration of the electrochemical performance enhancement in Pd-decorated reduced graphene oxide (rGO) nanocomposites through fluorine (F) or nitrogen (N) doping. Various analytical techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) were employed to thoroughly characterize the synthesized nanocomposites. The findings revealed that either F or N doping effectively addressed clustering issues of Pd nanoparticles formed on the rGO surface, resulting in improved homogeneity of Pd distribution. Electrochemical studies provided crucial insights into hydrogen adsorption-desorption behaviors. The heteroatom doped nanocomposites, Pd/N-rGO and Pd/F-rGO, exhibited superior electrochemical performance, which can be attributed to the increase of the active sites due to the N-/F-doping, respectively. The hydrogen discharge capacities of Pd/N-rGO (80.9 mAh g) and Pd/F-rGO (25.0 mAh g) nanocomposites were determined to be over 4.0 and 1.2 times higher than that of the Pd/rGO (20.1 mAh g), respectively. The distinctive electrochemical performances observed between the two types of heteroatom-containing nanocomposites highlight the subtle structural modifications of Pd nanoparticles as the key factor influencing performance. This research contributes essential knowledge to the evolving field of hydrogen storage materials, emphasizing the promising potential of heteroatom-doped Pd-decorated rGO nanocomposites for advancing clean and sustainable energy solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10351DOI Listing

Publication Analysis

Top Keywords

heteroatom doping
12
pd-decorated reduced
8
reduced graphene
8
graphene oxide
8
hydrogen storage
8
electrochemical performance
8
rgo nanocomposites
8
electron microscopy
8
x-ray absorption
8
electrochemical
6

Similar Publications

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

Gas-phase synthesis and detection of boron-doped nitride clusterfullerenes and a large variety of monometallofullerenes have been achieved using a pulsed laser vaporization cluster source. Density functional theory (DFT) calculations show that the electronic structures of boron-doped endohedral metallofullerenes differ from those of the pristine all-carbon cages due to the lack of one electron upon boron substitution. For monometallofullerenes, this is likely the main reason for the somewhat different abundance distribution observed for boron-doped with respect to all-carbon cages.

View Article and Find Full Text PDF

PAH-Finder: A Pattern Recognition Workflow for Identification of PAHs and Their Derivatives.

Anal Chem

January 2025

Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.

Polycyclic aromatic hydrocarbons (PAHs) are pervasive environmental pollutants with significant health risks due to their carcinogenic, mutagenic, and teratogenic properties. Traditional methods for PAH identification, primarily relying on gas chromatography-mass spectrometry (GC-MS), utilize spectral library searches together with other techniques, such as mass defect analysis. However, these methods are limited by incomplete spectral libraries and a high false positive rate.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).

View Article and Find Full Text PDF

Carbon nanostructures (CNs) are various low-dimensional allotropes of carbon that have attracted much scientific attention due to their interesting physicochemical properties. It was quickly discovered that the properties of CNs can be significantly improved by modifying their surface or synthesizing composites containing CNs. Composites combine two or more materials to create a final material with enhanced properties compared with their initial components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!