Testing Outlier Detection Algorithms for Identifying Early Stage Solute Clusters in Atom Probe Tomography.

Microsc Microanal

Department of Materials and Centre for Nuclear Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.

Published: November 2024

Atom probe tomography (APT) is commonly used to study solute clustering and precipitation in materials. However, standard techniques used to identify and characterize clusters within atom probe data, such as the density-based spatial clustering applications with noise (DBSCAN), often underperform with respect to small clusters. This is a limitation of density-based cluster identification algorithms, due to their dependence on the parameter Nmin, an arbitrary lower limit placed on detectable cluster sizes. Therefore, this article attempts to consider the characterization of clustering in atom probe data as an outlier detection problem of which k-nearest neighbors local outlier factor and learnable unified neighborhood-based anomaly ranking algorithms were tested against a simulated dataset and compared to the standard method. The decision score output of the algorithms was then auto thresholded by the Karcher mean to remove human bias. Each of the major models tested outperforms DBSCAN for cluster sizes of <25 atoms but underperforms for sizes >30 atoms using simulated data. However, the new combined k-nearest neighbors (k-NN) and DBSCAN method presented was able to perform well at all cluster sizes. The combined k-NN and seven methods are presented as a new approach to identifying clusters in APT.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mam/ozae076DOI Listing

Publication Analysis

Top Keywords

atom probe
16
cluster sizes
12
outlier detection
8
clusters atom
8
probe tomography
8
probe data
8
k-nearest neighbors
8
testing outlier
4
algorithms
4
detection algorithms
4

Similar Publications

Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides.

J Phys Chem A

January 2025

Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States.

The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RM-I compounds in particular, given the historic focus on period 2.

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Exploring the Chiral Match-Mismatch Effect in the Chiral Discrimination of Nitriles.

Anal Chem

January 2025

Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.

View Article and Find Full Text PDF

Adsorption of Eu and Gd on high-charge micas as inner-sphere complexes.

J Colloid Interface Sci

January 2025

Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:

High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.

View Article and Find Full Text PDF

Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!