Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Evidence indicates that both vitamin D and the gut microbiome are involved in the process of colon carcinogenesis. However, it is unclear what effects supplemental vitamin D has on the gut microbiome and its metabolites in healthy adults. We conducted a double-blind, randomized, placebo-controlled trial to identify the acute and long-term microbiota structural and metabolite changes that occur in response to a moderate dose (4,000 IU) of vitamin D for 12 weeks in healthy adults. Our results demonstrated a significant increase in serum 25-hydroxy-vitamin D (25(OH)D) in the treatment group compared to placebo ( < 0.0001). Vitamin D significantly increased compositional similarity ( < 0.0001) in the treatment group, and enriched members of the Bifidobacteriaceae family. We also identified a significant inverse relationship between the percent change in serum 25(OH)D and microbial stability in the treatment group ( = -0.52, < 0.019). Furthermore, vitamin D supplementation resulted in notable metabolic shifts, in addition to resulting in a drastic rewiring of key gut microbial-metabolic associations. In conclusion, we show that a moderate dose of vitamin D among healthy adults has unique acute and persistent effects on the fecal microbiota, and suggest novel mechanisms by which vitamin D may affect the host-microbiota relationship.
Importance: Preventative measures to reduce the rise in early-onset colorectal cancer are of critical need. Both vitamin D, dietary and serum levels, and the gut microbiome are implicated in the etiology of colorectal cancer. By understanding the intimate relationship between vitamin D, the gut microbiome, and its metabolites, we may be able to identify key mechanisms that can be targeted for intervention, including inflammation and metabolic dysfunction. Furthermore, the similarity of vitamin D to cholesterol, which is metabolized by the gut microbiome, gives precedence to its ability to produce metabolites that can be further studied and leveraged for controlling colorectal cancer incidence and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448053 | PMC |
http://dx.doi.org/10.1128/spectrum.00083-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!