serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. , acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352795 | PMC |
http://dx.doi.org/10.1080/19490976.2024.2392877 | DOI Listing |
J Biol Chem
December 2024
Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany; The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany. Electronic address:
FapC and FapB are biofilm-associated amyloids involved in the virulence of Pseudomonas and other bacteria. We herein demonstrate their exceptional thermal and chemical resilience, suggesting that their biofilm structures might withstand standard sterilization, thereby contributing to the persistence of P. aeruginosa infections.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Bacterial biofilms are highly adaptable and resilient to challenges. Nutrient availability can induce changes in biofilm growth, architecture and mechanical properties. Their extracellular matrix plays an important role in achieving biofilm stability under different environmental conditions.
View Article and Find Full Text PDFMicrobiol Spectr
November 2024
Biotechnology and Food Engineering Program; and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou, China.
Unlabelled: Biofilms formed by are composed of amyloid curli and cellulose and have been shown to be linked to pathogenicity, antibiotic resistance, and chronic infections. Guanabenz acetate (GABE), an antihypertensive drug, was identified as a potential strategic repurposing drug due to its biofilm inhibitory properties following an extensive antimicrobial screening assay of 2,202 Food and Drug Administration-approved non-antibiotic agents. The results of this study provide insights into the effectiveness of GABE as a therapeutic alternative against biofilm-associated infectious diseases.
View Article and Find Full Text PDFProtein Sci
October 2024
Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.
Gut Microbes
August 2024
Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!