Actinic keratoses (AKs) and keratinocyte carcinomas (KCs) arise from prolonged UV exposure, with precursor UV-induced clonal mutations (CMs) appearing in sun-damaged skin. Photodynamic therapy (PDT) is a common field treatment for AKs and early KCs, but its impact on subclinical CMs is unknown. This study examines CMs using targeted ultra-deep sequencing on epidermal samples. By comparing skin before and after PDT in five patients and a mouse model of chronic UV carcinogenesis, a significant reduction in low-frequency mutations post-treatment was revealed. These findings highlight PDT’s potential in modifying subclinical damage and propose low-variant allele frequency CMs as biomarkers for field treatment efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570346PMC
http://dx.doi.org/10.1093/bjd/ljae314DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
field treatment
8
therapy reduces
4
reduces burden
4
burden small
4
small ultraviolet-induced
4
ultraviolet-induced epidermal
4
epidermal clones
4
clones human
4
human mouse
4

Similar Publications

Reduction of by Chlorella-Mediated Antimicrobial Photodynamic Therapy.

J Lasers Med Sci

November 2024

Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Nowadays, antimicrobial photodynamic therapy (aPDT) has been introduced as one of the minimally invasive methods for disinfection of the surfaces of dental implants. Being derived from seaweed, Chlorella has been used as a photosensitizer in this study. This study aimed to investigate the impacts of aPDT with Chlorella on the rate of reduction of in vitro.

View Article and Find Full Text PDF

Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes.

Chem Sci

December 2024

Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.

View Article and Find Full Text PDF

NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer.

Int J Nanomedicine

January 2025

State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.

Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.

Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.

View Article and Find Full Text PDF

Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.

View Article and Find Full Text PDF

Mitochondria-Targeting Type-I Photodynamic Therapy Based on Phenothiazine for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Oxidative Stress.

Int J Nanomedicine

January 2025

Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.

Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.

Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!