Probing the Structure and Orientation of Carboxylic Acid-Terminated Self-Assembled Monolayers.

Langmuir

Flinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5042, Australia.

Published: September 2024

Self-assembled monolayers (SAMs), such as alkanethiols (AT), are widely used as functional coatings or interfaces between different materials. There is an assumption that the arrangement and alignment of the hydrocarbon chains in films made from carboxyl-terminated alkanethiols are similar to those made from alkanethiols. Here, the structure of the outermost layer and near-surface region of SAMs formed from carboxyl-terminated alkanethiols of various lengths has been analyzed. The chemical composition of the samples was measured using X-ray photoelectron spectroscopy (XPS) and angle-resolved XPS (AR-XPS), allowing the film thickness. Metastable induced photoelectron spectroscopy (MIES) as a surface analytical tool sensitive only for the outermost layer in conjunction with density functional theory (DFT) calculations provided insights into the composition of the topmost layer, showing that it consists mainly of the backbone of the SAM-forming molecules. Through combining AR-XPS concentration depth profiles and the measurement of the composition of the outermost layer, it can be shown that SAMs tend to favor a gauche orientation, enabling interactions between the functional groups.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01488DOI Listing

Publication Analysis

Top Keywords

outermost layer
12
self-assembled monolayers
8
carboxyl-terminated alkanethiols
8
photoelectron spectroscopy
8
probing structure
4
structure orientation
4
orientation carboxylic
4
carboxylic acid-terminated
4
acid-terminated self-assembled
4
monolayers self-assembled
4

Similar Publications

The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence.

Adv Mater

December 2024

Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.

Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions.

View Article and Find Full Text PDF

The infestation of tissue after implantation is a major problem as a bacterial biofilm can form on the surface of the implants, leading to implant-associated infections (IAIs). One approach to prevent such IAI is to apply antibacterial coatings consisting of polyelectrolyte multilayers (PEM) and bacteriophages (PHAGs). PEM were constructed by alternately adsorbing oppositely charged polyelectrolytes on a substrate according to the layer-by-layer concept.

View Article and Find Full Text PDF

All terrestrial plants possess a hydrophobic cuticle in the outermost layer of their aerial organs that is composed of cutin and wax. The cuticle serves as the first barrier between the plant and the surrounding environment and plays a key role in the resistance of plants to abiotic and biotic stressors. Additionally, they are closely associated with plant growth and development.

View Article and Find Full Text PDF

Large Scale Synthesis of Red-Emitting Quantum Dots for Efficient and Stable Light-Emitting Diodes.

Adv Mater

December 2024

Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.

It is known that large-scale synthesis of emitters affords colloidal quantum dot (CQD) materials with a great opportunity toward the mass production of quantum dot light-emitting diodes (QLEDs) based commercial electronic products. Herein, an unprecedented example of scalable CQD (> 0.5 kilogram) is achieved by using a core/shell structure of CdZnSe/ZnSeS/CdZnS, in which CdZnSe, ZnSeS, and CdZnS alloys are used as the inner core, transition layer and outermost shell, respectively.

View Article and Find Full Text PDF

Nonflammable Electrolytes With Weakly Lithiophilic Diluents for Stabilizing Silicon-Based Lithium-Ion Batteries.

Small

December 2024

State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China.

Stabilization of the silicon-based anode in lithium-ion batteries heavily depends on electrolyte engineering. However, despite the effectiveness of localized high-concentration electrolytes in enhancing battery life, most studies have focused on solvents and lithium salts, highlighting the urgent need for advanced diluents tailored to silicon-based anodes. Here, a nonflammable electrolyte with a weakly lithiophilic diluent is reported by introducing methyl perfluorobutyl ether into a mixture of lithium bis(fluorosulfonyl)imide and 1,2-dimethoxyethane, for the enhancement of silicon-based anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!