The achievement of RTP in hybrid organic-inorganic perovskites (HIOPs) via molecular engineering remains relatively uncommon. Here, a series of novel 2D HIOPs composed of mixed organic cations such as naphthalene methylamine (NMA) and 2-(4-methylphenyl) ethanamine (4MPEA) are reported. Efficient RTP and tunable emissions ranging from green to yellow to orange, depending on the doping ratio, are activated in the organic cation-mixed 2D HIOPs system. It has been certified that the triplet excitons of NMA primarily stem from the Wannier excitons of the inorganic layer through an energy transfer process. By gradually altering the halide composition from Br to Cl, the NMA substituted chlorine-based 2D HIOPs show an outstandingly long lifetime of 176 ms. Moreover, potential applications in multiple information encryption and displays have been demonstrated. Our study confirms the effectiveness of strategically hybridizing organic cations with inorganic matrices at the molecular level to achieve high performance RTP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c01848 | DOI Listing |
Food Res Int
February 2025
State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:
In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Recently, there has been a growing demand for plant-based beverages that meet nutritional and health needs and have an appealing taste. This study investigated the impact of fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 on the nutritional quality and aroma compound profile of a sea buckthorn-based cereal beverage. The mixed starter fermented samples, specifically S-APTD (SBCB inoculated with A.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (-F-PEA), enhancing phase distribution management in quasi-2D PeLEDs.
View Article and Find Full Text PDFNat Chem
January 2025
TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry and Catalysis Research Center, Technical University of Munich, Garching, Germany.
The exploration of ligated metal clusters' chemical space is challenging, partly owing to an insufficiently targeted access to reactive clusters. Now, dynamic mixtures of clusters, defined as living libraries, are obtained through organometallic precursor chemistry. The libraries are populated with interrelated clusters, including transient and highly reactive ones, as well as more accessible but less reactive species.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!