A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioremediation of Brilliant Green cationic dye from water using Nutraceutical Industrial Coriander Seed Spent as an adsorbent: adsorption isotherms, kinetic models, and thermodynamic studies. | LitMetric

The article details a feasibility study of removing Brilliant Green (BG), a mutagenic dye from an aqueous solution by adsorption using low-cost coriander seed spent as a by-product in the nutraceutical industry. The study includes an analysis of the parameters that affect the adsorption process. The variables that have been identified include pH, dye concentration, process temperature, adsorbent amount, and particle size of the adsorbent. To obtain information on the adsorption process and to design the mechanism of the adsorption system on experimental equilibrium, 10 isotherm models, namely, Langmuir, Freundlich, Jovanovic, Dubinin-Radushkevich, Sips, Redlich-Peterson, Toth, Vieth-Sladek, Brouers-Sotolongo, and Radke-Prausnitz were applied. It was discovered that the experimental adsorption capacity, , was roughly 110 mg g. The result has a maximum adsorption of 136.17 mg g as predicted by Dubinin-Radushkevich isotherm. Diffusion film models, Dumwald-Wagner and Weber-Morris models, and pseudo-first- and second-order models, were used to determine the adsorption kinetics. It was realized that the adsorption kinetics data fit into a pseudo-second-order model. Thermodynamic analysis with a reduced enthalpy change suggests a physical process. The values of the thermodynamic parameters Δ, Δ, and Δ demonstrated an endothermic and nearly spontaneous process of adsorption. The small valuation of Δ specifies that the process is physical. FTIR spectroscopy and SEM imaging were used to confirm that the BG dye had been adsorbing on the adsorbent surface. The study concludes that NICSS is an effective adsorbent to extract BG dye from wastewater solutions, offers insights into numerous dye and adsorbent interaction possibilities and indicates that the process can be scaled to fit into the concept of circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2024.2391949DOI Listing

Publication Analysis

Top Keywords

adsorption
10
brilliant green
8
coriander seed
8
seed spent
8
adsorbent adsorption
8
adsorption process
8
adsorption kinetics
8
process
7
dye
6
adsorbent
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!