CT-based different regions of interest radiomics analysis for acute radiation pneumonitis in patients with locally advanced NSCLC after chemoradiotherapy.

Clin Transl Radiat Oncol

Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy , Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, NO.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China.

Published: September 2024

Purpose: To establish a radiomics model using radiomics features from different region of interests (ROI) based on dosimetry-related regions in enhanced computed tomography (CT) simulated images to predict radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC).

Methods: Our retrospective study was conducted based on a cohort of 236 NSCLC patients (59 of them with RP≥2) who were treated in 2 institutions and divided into the primary cohort (n = 182,46 of them with RP≥2) and external validation cohort (n = 54,13 of them with RP≥2). Radiomic features extracted from three ROIs were defined as the whole lung (WL), the dose volume histogram (DVH) of the lung V20 (V20_Lung) and the DVH of the V30 of lung minus the planning target volume (PTV) (V30 Lung-PTV). A total of 107 radiomics features were extracted from each ROIs. The test, correlation coefficient and least absolute shrinkage and selection operator (LASSO) were performed for features selection. Six models based on different classification algorithms were developed to select the best radiomics model (R model).In addition, we built a dosimetry model then combined it with the best R model to create a mixed model (R+D model) The receiver operating characteristic (ROC) curve was delineated to assess the predictive efficacy of the models. Decision curve analysis could benefit from the model proposals through the assessment of clinical utility.

Results: Among the three ROIs, the best R model constructed from the LightGBM algorithm demonstrated the strongest discriminative ability in the ROI of V30 Lung-PTV. The corresponding area under the curve (AUC) value was 0.930 (95 % confidence interval (CI): 0.829-0.941). The D model, R model and R+D model achieved AUC values of 0.798 (95 %CI: 0.732-0.865), 0.930 (95 %CI: 0.829-0.941) and 0.940 (95 %CI: 0.906-0.974) in primary cohort, and in external validation cohort, the AUC values were 0.793 (95 %CI:0.637-0.949), 0.887 (95 %CI:0.810-0.993), 0.951 (95CI%:0.891-1.000). Decision curve demonstrate that R+D model could benefit for patients through the assessment of clinical utility.

Conclusion: The radiomics model was able to predict the acute RP more effectively in comparison with the traditional dosimetry model. Especially the radiomics model based on the V30 Lung-PTV region was able to achieve a higher accuracy when compared to the other regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345682PMC
http://dx.doi.org/10.1016/j.ctro.2024.100828DOI Listing

Publication Analysis

Top Keywords

radiomics model
16
model
15
v30 lung-ptv
12
r+d model
12
radiation pneumonitis
8
pneumonitis patients
8
model radiomics
8
radiomics features
8
primary cohort
8
external validation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!