Responsive hydrogel microfibers can realize multiple controllable changes in shapes or properties under the stimulation of the surrounding environment, and are called as intelligent biomaterials. Recently, these responsive hydrogel microfibers have been proved to possess significant biomedical values, and remarkable progress has been achieved in biomedical engineering applications, including drug delivery, biosensors and clinical therapy, etc. In this review, the latest research progress and application prospects of responsive hydrogel microfibers in biomedical engineering are summarized. We first introduce the common preparation strategies of responsive hydrogel microfibers. Subsequently, the response characteristics and the biomedical applications of these materials are discussed. Finally, the present opportunities and challenges as well as the prospects for future development are critically analyzed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235791 | PMC |
http://dx.doi.org/10.1002/SMMD.20220003 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany.
Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, People's Republic of China.
Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.
View Article and Find Full Text PDFAdv Mater
January 2025
Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Tumor vaccines that activate the autologous immune system to eliminate tumor cells represent a promising approach in cancer immunotherapy. However, challenges such as tumor heterogeneity, limited antigen selection, insufficient antigen presentation, and the slow onset of de novo immune responses have resulted in poor universality and suboptimal response rates. In contrast, pathogen-specific pre-existing immunity acquired through infection or vaccination, can rapidly generate a more potent and enduring immune response upon re-encounter with the same antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!