Triple-negative breast cancer (TNBC) is still the most aggressive cancer in women. Combination chemotherapy holds great potential for cancer therapy; however, the off-target and side effects of free chemotherapy administration remain a major challenge. In this study, we developed a photo/thermo-responsive nanoplatform that can be used for TNBC treatment via photothermic therapy in combination with multidrug therapy. By conjugating the chemotherapy drug PTX prodrug on the surface of mesoporous silica-coated gold nanorod nanoparticles and then loading another chemotherapy drug, CPT, the Au@MSN-PTX@CPT nanoparticles exhibited great photothermal response, redox response drug release and cancer cell inhibition abilities. Otherwise, we further coated the Au@MSN-PTX@CPT nanoparticle with a temperature-sensitive polymer poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAM-co-MAAc)), and the polymer-coated Au@MSN-PTX@TPT@polymer nanoparticles showed perfect near-infrared (NIR) light controlled drug release. Finally, the Au@MSN-PTX@CPT@polymer nanoparticles were injected into the 4T1 breast cancer mouse model. The Au@MSN-PTX@CPT@polymer nanoparticles preferably accumulated at the tumor site and had reduced chemotherapy injuries and great antitumor activity when combined with 650 nm laser treatment. In summary, our developed Au@MSN-PTX@CPT@polymer nanoparticles served as a good method for controlled chemodrug delivery and provided a good choice for TNBC combination therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235718 | PMC |
http://dx.doi.org/10.1002/SMMD.20220036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!