Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking. Emphatically, the applications of silk fibroin hydrogel biomaterials in various biomedical fields, including tissue engineering, drug delivery, and wearable sensors, are systematically summarized. At last, the challenges and future prospects of silk fibroin hydrogels in biomedical applications are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235963PMC
http://dx.doi.org/10.1002/SMMD.20220011DOI Listing

Publication Analysis

Top Keywords

silk fibroin
24
fibroin hydrogels
16
hydrogels biomedical
8
biomedical applications
8
applications silk
8
mechanical properties
8
silk
6
fibroin
5
hydrogels
4
biomedical
4

Similar Publications

Review on application of silk fibroin hydrogels in the management of wound healing.

Int J Biol Macromol

January 2025

State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China. Electronic address:

Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Chronic implantable flexible serpentine probe reveals impaired spatial coding of place cells in epilepsy.

Natl Sci Rev

February 2025

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

The development of minimally invasive and reliable electrode probes for neural signal recording is crucial for advancing neuroscience and treating major brain disorders. Flexible neural probes offer superior long-term recording capabilities over traditional rigid probes. This study introduces a parylene-based serpentine electrode probe for stable, long-term neural monitoring.

View Article and Find Full Text PDF

Silk fibroin (SF), a natural polymer with very desirable physicochemical and biological properties, is an ideal material for crafting biocompatible scaffolds in tissue engineering. However, conventional methods for removing the sericin layer and dissolving SF often involve environmentally harmful reagents and processes, requiring extensive dialysis procedures to purify the fibers produced. Such processes may also damage the surface and bulk properties of the SF produced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!