A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteoporotic vertebral compression fracture (OVCF) detection using artificial neural networks model based on the AO spine-DGOU osteoporotic fracture classification system. | LitMetric

Background: Osteoporotic Vertebral Compression Fracture (OVCF) substantially reduces a person's health-related quality of life. Computer Tomography (CT) scan is currently the standard for diagnosis of OVCF. The aim of this paper was to evaluate the OVCF detection potential of artificial neural networks (ANN).

Methods: Models of artificial intelligence based on deep learning hold promise for quickly and automatically identifying and visualizing OVCF. This study investigated the detection, classification, and grading of OVCF using deep artificial neural networks (ANN). Techniques: Annotation techniques were used to segregate the sagittal images of 1,050 OVCF CT pictures with symptomatic low back pain into 934 CT images for a training dataset (89%) and 116 CT images for a test dataset (11%). A radiologist tagged, cleaned, and annotated the training dataset. Disc deterioration was assessed in all lumbar discs using the AO Spine-DGOU Osteoporotic Fracture Classification System. The detection and grading of OVCF were trained using the deep learning ANN model. By putting an automatic model to the test for dataset grading, the outcomes of the ANN model training were confirmed.

Results: The sagittal lumbar CT training dataset included 5,010 OVCF from OF1, 1942 from OF2, 522 from OF3, 336 from OF4, and none from OF5. With overall 96.04% accuracy, the deep ANN model was able to identify and categorize lumbar OVCF.

Conclusions: The ANN model offers a rapid and effective way to classify lumbar OVCF by automatically and consistently evaluating routine CT scans using AO Spine-DGOU osteoporotic fracture classification system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345903PMC
http://dx.doi.org/10.1016/j.xnsj.2024.100515DOI Listing

Publication Analysis

Top Keywords

ann model
16
artificial neural
12
neural networks
12
spine-dgou osteoporotic
12
osteoporotic fracture
12
fracture classification
12
classification system
12
training dataset
12
ovcf
10
osteoporotic vertebral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!