Synaptic memristors based on BaTiO thin films irradiated by swift heavy ions for neuromorphic computing.

Mater Horiz

College of Electronic and Information Engineering, College of Physics Science, Qingdao University, Qingdao 266071, China.

Published: October 2024

AI Article Synopsis

  • Swift heavy ion (SHI) irradiation modifies the properties of thin oxide films by creating defects and structural changes, specifically in BaTiO (BTO) films on Nb:SrTiO substrates.
  • Memristors made from these irradiated BTO films demonstrated impressive retention, endurance, and stable synaptic plasticity functions, enabling effective data processing.
  • Utilizing an artificial neural network, the memristors achieved a high discrimination accuracy of 92.5% for handwritten digit recognition, highlighting the potential of SHI irradiation for neuromorphic computing applications.

Article Abstract

Swift heavy ion (SHI) irradiation is an effective method for modulating the properties of thin oxide films by introducing defects, strains, and structural transformations. Here, we applied 516 MeV Xe irradiation to BaTiO (BTO) thin films grown on Nb:SrTiO substrates to induce the generation of tracks and nanohillocks. Memristors with BTO films irradiated at a fluence of 5 × 10 ions cm displayed excellent retention and endurance characteristics. Moreover, the memristors exhibited highly stable synaptic plasticity functions such as excitatory/inhibitory post-synaptic currents (E/IPSC) and paired-pulse facilitation/depression (PPF/D). The memristors achieved a discrimination accuracy of 92.5% on given handwritten digit data by an artificial neural network with supervised learning. These results verify that the judicious application of SHI irradiation on thin oxide films is a viable strategy for exploring neuromorphic computation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh00716fDOI Listing

Publication Analysis

Top Keywords

thin films
8
films irradiated
8
swift heavy
8
shi irradiation
8
thin oxide
8
oxide films
8
films
5
synaptic memristors
4
memristors based
4
based batio
4

Similar Publications

The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.

View Article and Find Full Text PDF

The role of self-intercalation in 2D van der Waals materials is key to the understanding of many of their properties. Here we show that the magnetic ordering temperature of thin films of the 2D ferromagnet Fe_{5}GeTe_{2} is substantially increased by self-intercalated Fe that resides in the van der Waals gaps. The epitaxial films were prepared by molecular beam epitaxy and their magnetic properties explored by element-specific x-ray magnetic circular dichroism that showed ferromagnetic ordering up to 375 K.

View Article and Find Full Text PDF

It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.

View Article and Find Full Text PDF

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!