A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of vetiver root on cracking of expansive soils and its mechanistic analysis. | LitMetric

Effects of vetiver root on cracking of expansive soils and its mechanistic analysis.

Sci Rep

Guangxi Communications Group Co., LTD, Nanning, Guangxi, China.

Published: August 2024

The study investigated the reinforcing effect of vetiver root on soil by conducting outdoor planting tests and indoor root tests. The cracking indexes of soil specimens with varying root contents were analyzed, and a statistical model was established to determine the relationship between the cracking indexes, the number of dry and wet cycles, and the root content. The study revealed the crack evolution law of vetiver-reinforced expansive soil. The study explored the mechanism of the vegetation root in inhibiting the cracking of expansive soil and determined the optimal planting density of vetiver grass through outdoor planting tests. The results indicate that: The surface crack rate (CR), total crack length (CL), and crack number (CN) in the root-soil specimen exhibited exponential growth with an increase in the number of wet and dry cycles. This growth was more pronounced during the first and second cycles. The vetiver root could effectively reduce soil crack formation, and the specimen's cracking resistance is positively correlated with the root content. With the root content increased, the CR, CN, and CL decreased. The logistic model is suited to the CL of added root soil. The logistic model is more suitable for the growth model of the CR of the expansive soil with low root content, while the Boltzmann model is more suitable for the growth model of the CR of the expansive soil with high root content. Width of crack (CW) is better suited to the DoseResp growth model. The Boltzmann model is more applicable to the CN in expansive soils with low reinforcement, while the logistic growth model is more suitable for the development of CN above 0.21% root content. The development of the crack network was influenced by two key factors: the root content and the number of wet and dry cycles. Under the condition of planting roots, the development of crack networks in expansive soil differs from that of expansive soil with added roots, and there is no clear pattern to follow. The inhibitory effect of the vetiver root on cracking of expansive soil is related to the planting density of vetiver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347634PMC
http://dx.doi.org/10.1038/s41598-024-70934-1DOI Listing

Publication Analysis

Top Keywords

root content
28
expansive soil
28
vetiver root
16
growth model
16
root
15
cracking expansive
12
model suitable
12
soil
11
expansive
9
model
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!