Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Subducting oceanic plates carry large amounts of carbon into the Earth's interior. The subducted carbon is mobilized by fluid and encounters ultramafic rocks in the mantle wedge, resulting in changes to the mineral assemblage and mechanical properties of the mantle. Here, we use thermodynamic modeling of interactions between carbon-bearing multi-component fluids and mantle rocks to investigate the down-dip variation in mineral assemblage in the forearc mantle along subduction megathrusts. We found that fluids rich in aqueous carbon are preferentially generated in a warm subduction zone (e.g., Nankai, SW Japan), causing a change in mineral assemblage from serpentine-rich at the mantle wedge corner to talc + carbonate-rich at greater depths. The transition caused by the infiltration of aqueous carbon may influence the depth of the boundary between the seismogenic and aseismic zones, and the down-dip limit of episodic tremor and slip.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347577 | PMC |
http://dx.doi.org/10.1038/s41467-024-51476-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!