Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40°C, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from . The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485624PMC
http://dx.doi.org/10.4014/jmb.2404.04030DOI Listing

Publication Analysis

Top Keywords

pet hydrolase
32
pet
13
hydrolase
9
characterization pet
8
bhet
5
silico analysis
4
analysis biochemical
4
biochemical characterization
4
hydrolase bis2-hydroxyethyl
4
bis2-hydroxyethyl terephthalate
4

Similar Publications

Fine tuning enzyme activity assays for monitoring the enzymatic hydrolysis of PET.

Sci Rep

January 2025

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.

Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.

View Article and Find Full Text PDF

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

Radiosynthesis and evaluation of novel F labeled PET ligands for imaging monoacylglycerol lipase.

Eur J Med Chem

January 2025

Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:

Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.

View Article and Find Full Text PDF

Atomistic adsorption of PETase onto large-scale PET 3D-models that mimic reality.

Phys Chem Chem Phys

January 2025

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.

Polyethylene terephthalate (PET) has been widely used in plastic products, leading to massive PET waste accumulation in ecosystems worldwide. Efforts to find greener processes for dealing with post-consumer PET waste led to the discovery of PET-degrading enzymes such as PETase (PETase). studies have provided valuable contributions to this field, shedding light on the catalytic mechanisms and substrate interactions in many PET hydrolase enzymes.

View Article and Find Full Text PDF

We report an interesting case of a 64-year-old man with a history of radical prostatectomy for prostate cancer. The patient presented with steady increasing prostate-specific antigen levels, but with negative findings on previous multiple conventional prostate-specific membrane antigen (PSMA) PET/CT (with [68Ga]Ga-PSMA-11) and [18F]FDG PET/CT. A recently introduced PSMA tracer using long-lived 89Zr (half-life 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!