Regulating the catalytic reaction pathway to essentially break the activity/stability trade-off that limits RuO and thus achieves exceptional stability and activity for the acidic oxygen evolution reaction (OER) is important yet challenging. Herein, we propose a novel strategy of incorporating atomically dispersed V species, including O-bridged V dimers and V single atoms, into RuO lattices to trigger direct O-O radical coupling to release O without the generation of *OOH intermediates. V-RuO showed high activity with a low overpotential of 227 mV at 10 mA cm and outstanding stability during a 1050 h test in acidic electrolyte. Operando spectroscopic studies and theoretical calculations revealed that compared with the V single atom-doping case, the introduction of the V dimer into RuO further decreases the Ru-V atomic distance and weakens the adsorption strength of the *O intermediate to the active V site, which supports the more energetically favorable oxygen radical coupling mechanism (OCM). Furthermore, the highly asymmetric Ru-O-V local structure stabilizes the surface Ru active center by lowering the valence state and increasing the resistance against overoxidation, which result in outstanding stability. This study provides insight into ways of increasing the intrinsic catalytic activity and stability of RuO by atomically dispersed species modification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202413657DOI Listing

Publication Analysis

Top Keywords

atomically dispersed
12
dispersed species
8
radical coupling
8
outstanding stability
8
dispersed vanadium-induced
4
vanadium-induced ru-v
4
ru-v dual
4
dual active
4
active sites
4
sites enable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!