Silibinin Mitigates Vanadium-induced Lung Injury the TLR4/MAPK/NF-κB Pathway in Mice.

In Vivo

Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea;

Published: August 2024

Background/aim: Silibinin, has been investigated for its potential benefits and mechanisms in addressing vanadium pentoxide (V2O5)-induced pulmonary inflammation. This study explored the anti-inflammatory activity of silibinin and elucidate the mechanisms by which it operates in a mouse model of vanadium-induced lung injury.

Materials And Methods: Eight-week-old male BALB/c mice were exposed to V2O5 to induce lung injury. Mice were pretreated with silibinin at doses of 50 mg/kg and 100 mg/kg. Histological analyses were performed to assess cell viability and infiltration of inflammatory cells. The expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and activation of the MAPK and NF-[Formula: see text]B signaling pathways, as well as the NLRP3 inflammasome, were evaluated using real-time PCR, western blot analysis, and immunohistochemistry. Whole blood analysis was conducted to measure white blood cell counts.

Results: Silibinin treatment significantly improved cell viability, reduced inflammatory cell infiltration, and decreased the expression of pro-inflammatory cytokines in V2O5-induced lung injury. It also notably suppressed the activation of the MAPK and NF-[Formula: see text]B signaling pathways, along with a marked reduction in NLRP3 inflammasome expression levels in lung tissues. Additionally, silibinin-treated groups exhibited a significant decrease in white blood cell counts, including neutrophils, lymphocytes, and eosinophils.

Conclusion: These findings underscore the potent anti-inflammatory effects of silibinin in mice with V2O5-induced lung inflammation, highlighting its therapeutic potential. The study not only confirms the efficacy of silibinin in mitigating inflammatory responses but also provides a foundational understanding of its role in modulating key inflammatory pathways, paving the way for future therapeutic strategies against pulmonary inflammation induced by environmental pollutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363785PMC
http://dx.doi.org/10.21873/invivo.13681DOI Listing

Publication Analysis

Top Keywords

lung injury
12
vanadium-induced lung
8
pulmonary inflammation
8
cell viability
8
expression pro-inflammatory
8
pro-inflammatory cytokines
8
activation mapk
8
mapk nf-[formula
8
nf-[formula text]b
8
text]b signaling
8

Similar Publications

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Human Umbilical Cord-Mesenchymal Stem Cells Combined With Low Dosage Nintedanib Rather Than Using Alone Mitigates Pulmonary Fibrosis in Mice.

Stem Cells Int

January 2025

Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.

View Article and Find Full Text PDF

Introduction: The factors influencing meconium aspiration syndrome (MAS) severity remain poorly understood. In a piglet model of MAS, we hypothesized the respiratory microbiome would reflect the bacterial signature of meconium with short-chain fatty acid (SCFA) accumulation as a byproduct of bacterial fermentation.

Methods: Cesarean section at approximately 115-day term was performed on two sows.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a serious complication in premature infants. This study aimed to investigate the mechanism of mitogen-activated protein 3 kinase 7 (Map3k7) affecting BPD by regulating caspase-1 mediated pyroptosis. The morphology of the lung tissue was observed using hematoxylin-eosin staining.

View Article and Find Full Text PDF

Tangeretin alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage via Nrf2 signaling pathway.

Chin Med

January 2025

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.

Background: Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!