The role of microbiota and oxidative stress axis and the impact of intravenous immunoglobulin in systemic lupus erythematosus.

Autoimmun Rev

Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy. Electronic address:

Published: September 2024

AI Article Synopsis

  • Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multiple organs, with recent studies highlighting the roles of oxidative stress and gut microbiota in its development.
  • Oxidative stress leads to harmful reactions in cells, while imbalances in gut bacteria (dysbiosis) are linked to SLE onset and worsening symptoms.
  • Intravenous immunoglobulins (IVIg) show promise as a treatment by reducing oxidative stress and restoring gut health, suggesting that targeting these factors could improve SLE management and outcomes.

Article Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by widespread inflammation affecting various organs. This review discusses the role of oxidative stress and gut microbiota in the pathogenesis of SLE and evaluates the therapeutic potential of intravenous immunoglobulins (IVIg). Oxidative stress contributes to SLE by causing impairment in the function of mitochondria, resulting in reactive oxygen species production, which triggers autoantigenicity and proinflammatory cytokines. Gut microbiota also plays a significant role in SLE. Dysbiosis has been associated to disease's onset and progression. Moreover, dysbiosis exacerbates SLE symptoms and influences systemic immunity, leading to a breakdown in bacterial tolerance and an increase in inflammatory responses. High-dose IVIg has emerged as a promising treatment for refractory cases of SLE. The beneficial effects of IVIg are partly due to its antioxidant property, reducing oxidative stress markers and modulating the immune responses. Additionally, IVIg can normalize the gut flora, as demonstrated in a case of severe intestinal pseudo-obstruction. In summary, both oxidative stress and dysregulation of microbiota are pivotal in the pathogenesis of SLE. The use of IVIg may improve the disease's outcome. Future research should be directed to elucidating the precise mechanisms by which oxidative stress and microbiota are linked with autoimmunity in SLE in developing targeted therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2024.103607DOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
systemic lupus
8
lupus erythematosus
8
sle
8
gut microbiota
8
pathogenesis sle
8
oxidative
6
stress
6
ivig
5
role microbiota
4

Similar Publications

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Migration characteristics and toxic effects of perfluorooctane sulfonate and perfluorobutane sulfonate in tobacco.

Sci Total Environ

January 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Perfluorooctane sulfonate (PFOS) and its new substitute, perfluorobutane sulfonate (PFBS), are increasing in concentration in the environment annually, and their toxicity cannot be ignored. With an increasing amount of PFOS and PFBS entering the environment, especially into farmland soil, it is very likely to pollute tobacco-planting soil. Therefore, we chose tobacco (Nicotiana tabacum L.

View Article and Find Full Text PDF

Sound and Alzheimer's Disease-From Harmful Noise to Beneficial Soundscape Augmentation and Music Therapy.

Noise Health

January 2025

Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Exposure to sound energy may be a risk factor or a therapeutic intervention for Alzheimer's disease (AD). On one hand, noise has a harmful effect on people with AD by contributing to hearing loss, sleep disturbance, oxidative stress, inflammation, and excitotoxicity. But on the other hand, clinical trials and nursing home interventions with soundscape augmentation involving natural sounds have shown promising results in alleviating psychophysiological symptoms in people with AD.

View Article and Find Full Text PDF

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!