In this study, we develop and validate a new Parkinson's disease (PD) mouse model that can be used to better understand how the disease progresses and to test the effects of new, potentially disease-modifying, PD therapies. Our central hypothesis is that mitochondrial dysfunction intercalates with misfolded α-synuclein (α-syn) accumulation in a vicious cycle, leading to the loss of nigral neurons. Our hypothesis builds on the concept that PD involves multiple molecular insults, including mitochondrial dysfunction and aberrant α-syn handling. We predicted that mitochondrial deficits, due to heterozygous loss of Engrailed-1 (En1+/-), combined with bilateral injections of pathogenic α-syn fibrils (PFFs), will act to generate a highly relevant PD model - the En1/SYN model. Here, En1+/- mice received bilateral intrastriatal stereotaxic injections of either PBS or α-syn fibrils and were analyzed using automated behavioral tests and deep learning-assisted histological analysis at 2, 4, and 6 months post-injection. We observed significant and progressive Lewy body-like inclusion pathology in the amygdala, motor cortex, and cingulate cortex, as well as the loss of tyrosine hydroxylase-positive (TH+) cells in the substantia nigra. The En1/SYN model also exhibited significant motor impairments at 6 months post-injection, which were however not exacerbated as we had expected. Still, this model has a comprehensive number of PD-like phenotypes and is therefore superior when compared to the α-syn PFF or En1+/- models alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513166 | PMC |
http://dx.doi.org/10.1016/j.nbd.2024.106647 | DOI Listing |
Gene
December 2024
Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:
Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
Bochkov Research Centre for Medical Genetics, Moscow, Russia.
A fifth world case of autosomal recessive Siddiqi syndrome (SIDDIS) related to ene is presented. In a consanguineous Lezgin (a Dagestan ethnicity) family, there were two affected brothers aged 28 yrs (proband, personally examined) and 32 yrs. Whole-exome sequencing followed by familial Sanger sequencing detected a novel missence variant c.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, Ramaiah Medical College and Hospitals, Ramaiah University of Applied Sciences, Bengaluru, India.
Spinocerebellar ataxias (SCAs) are a diverse and heterogeneous group of inherited neurodegenerative disorders marked by progressive ataxia and cerebellar degeneration. This case report details an 11-year-old Indian boy with childhood-onset ataxia and severe sensorineural hearing loss, a rarely reported concomitance in pediatric neurology. Genetic analysis identified a unique heterozygous 3' splice site variant in the PNPT1 gene (c.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands.
A defect in the canonical Wnt-β-catenin pathway may lead to reduced bone strength and increased fracture risk. Sclerostin is a key inhibitor of this pathway by binding to low-density lipoprotein (LDL) receptor-related protein , thereby reducing bone formation. The effectiveness of romosozumab, a human monoclonal antibody that binds sclerostin and prevents this inhibitory effect, has been questioned in patients with inactivating genetic variants in or .
View Article and Find Full Text PDFNeurogenetics
December 2024
Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
In most cases there is a single etiological factor causing neuromotor developmental delay and epilepsy while sometimes more than one gene may be involved. These include the autosomal recessive inherited CAMSAP1 gene, which is associated with cortical developmental malformations such as pachygyria and lissencephaly and the autosomal dominant inherited NBEA gene, which plays crucial roles in vesicle trafficking as well as synapse structure and function. Loss of function of both genes together is a well-known disease mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!