Ion transport peptide and ion transport peptide-like regulate ecdysis behavior and water transport during ecdysis in Gryllus bimaculatus.

Insect Biochem Mol Biol

Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan. Electronic address:

Published: October 2024

Ion transport peptide (ITP) and ITP-like (ITPLs) are pleiotropic bioactive peptides in insects. Although the contribution of these peptides to ecdysis has been studied, the precise regulatory mechanisms remain poorly understood. Here, we characterized the functions of itp and itpl variants in the two-spotted cricket, Gryllus bimaculatus. Reverse transcription-quantitative PCR and whole-mount in situ hybridization revealed that itp was expressed in the brain and terminal abdominal ganglion, whereas itpl variants were expressed in all ganglia of the central nervous system. Simultaneous knockdown of itp and itpls disrupted ecdysis behavior and water transport from the gut into the hemolymph during molting. Nevertheless, knockdown of itpls without influencing itp expression did not significantly affect ecdysis behavior but caused a reduction in hemolymph mass. Although water transport into the hemolymph is considered necessary for the swelling required to split the old cuticle layers during molting, a rescue experiment by injection of water or cricket Ringer's solution into the hemolymph of knockdown crickets did not recover the normal phenotype. Therefore, we propose that ITP/ITPL control ecdysis behavior probably not by regulating water transport from the gut into the hemolymph in crickets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2024.104178DOI Listing

Publication Analysis

Top Keywords

ecdysis behavior
16
water transport
16
ion transport
12
transport peptide
8
behavior water
8
gryllus bimaculatus
8
itpl variants
8
transport gut
8
gut hemolymph
8
transport
6

Similar Publications

Cuticular nitrogen economy during development in the cockroach Cryptocercus punctulatus and the termite Neotermes jouteli.

J Insect Physiol

December 2024

Department of Entomology, VA Tech, Blacksburg, VA, 24061-0319, United States.

The role of nitrogen during insect development and reproduction is key in the success of a species, and is of primary importance in wood feeding taxa. Based on comparison of xylophagous, one-piece termites to the termite sister group, subsocial wood-feeding cockroaches in the genus Cryptocercus, it has been proposed that the evolution of termite eusociality involved a fundamental shift in nitrogen allocation strategies. Cryptocercus exhibits a nitrogen storage economy, with individuals gradually increasing in size and cuticular density over a years-long developmental period.

View Article and Find Full Text PDF

The effects of expanded polystyrene particle on energy metabolism of the sea slater (Ligia cinerascens) originating from a highly EPS-polluted area.

Comp Biochem Physiol C Toxicol Pharmacol

December 2024

Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea. Electronic address:

Due to its high concentration and persistence, microplastic (MP) pollution is a major threat to marine environments. Expanded polystyrene (EPS) particles are the most abundant MP type in Asian regions, including the Korean coastal region. Although many previous studies have reported the toxicity of MPs to marine biota, the toxicity of environmentally relevant MPs to coastal organisms is not well understood.

View Article and Find Full Text PDF

Recent unusual mortality events involving skin pathology in bearded (), ringed (), and spotted seals () in Alaska highlight the potential sensitivity of ice-associated species to the complex effects of climate change. The regulation of thyroid hormones, cortisol, and vitamin A have been shown to play essential roles in skin health and seasonal molt in some pinnipeds. Unfortunately, the lack of available reference data for healthy Alaskan ice seals has prevented the adequate evaluation of these factors in cases associated with mortality events.

View Article and Find Full Text PDF

, with an annual production of 5-6 million tons and a value of USD 50-60 billion, is a cornerstone of global aquaculture. However, molting-related losses of 5-20% significantly impact this industry, and the physiological mechanisms of molting remain unclear. This study aims to elucidate the role of eclosion hormone (EH) in molting regulation and enhances the understanding of molting physiology in .

View Article and Find Full Text PDF

Functional analysis of dopa decarboxylase in the larval pupation and immunity of the diamondback moth, Plutella xylostella.

Pestic Biochem Physiol

December 2024

Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China. Electronic address:

The diamondback moth (Plutella xylostella L.), a notorious pest infesting cruciferous vegetables worldwide, has developed a high level of resistance to various commonly used chemical pesticides. In this paper, we explore whether dopa decarboxylase (DDC), which is essential for survival and development in insects, could be used as a potential target for the control of P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!