Investigating the potential mechanism of Pioglitazone in Sepsis-Related brain injury through transcriptomics.

Gene

The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, China. Electronic address:

Published: December 2024

Sepsis-related brain injury (SRBI) refers to brain dysfunction and structural damage caused by sepsis, which is characterized by inflammation, oxidative stress, and destruction of the blood-brain barrier. Pioglitazone is a PPAR-γ agonist in which PPAR-γ acts as an inflammatory modulator, determining the relationship between PPAR-γ and SRBI and inflammatory state is critical for the disease. This study aimed to construct a drug-target-disease network for SRBI and Pioglitazone based on network pharmacology, and to investigate the therapeutic effect and potential mechanism of Pioglitazone in SRBI induced by lipopolysaccharide (LPS) in rats through transcriptomics. To establish a rat Model of SRBI by intraperitoneal injection of LPS (10 mg/kg): SD rats were divided into Control, Model (LPS), Pioglitazone, (LPS + Pioglitazone) and GW9662 group (LPS+GW9662). The effects and potential mechanisms of Pioglitazone in the treatment of SRBI were studied using biochemical indexes, pathological changes and transcriptome-sequencing (RNA-seq). RNA-seq results showed 620 DEGs between the Model and the Pioglitazone groups. Enrichment analysis involved multiple inflammatory response processes and chemokine receptor binding functions. TLR4 and CXCL10 in the Toll signaling pathway may play an important role in SRBI as important targets. Pioglitazone may ameliorate SRBI through the PPAR-γ/TLR4/CXCL10 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.148892DOI Listing

Publication Analysis

Top Keywords

potential mechanism
8
pioglitazone
8
mechanism pioglitazone
8
sepsis-related brain
8
brain injury
8
srbi
8
investigating potential
4
pioglitazone sepsis-related
4
injury transcriptomics
4
transcriptomics sepsis-related
4

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Background: A lumbosacral transitional vertebra (LTV) is a congenital anomaly of the caudal vertebral column. It has been associated with asymmetrical canine hip dysplasia (CHD) and cauda equina syndrome (CES) in German Shepherd dogs. This retrospective cross-sectional study aims to report the potential influence of asymmetric LTV on pelvic anatomy using ventrodorsal (VD) radiographs.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!