In-situ construction of chitosan@tannin structure on bamboo fiber for green and convenient reinforcement of poly(3-hydroxybutyrate) biocomposite.

Int J Biol Macromol

Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address:

Published: October 2024

Fiber-reinforced biocomposites were widely considered as the optimal sustainable alternative to traditional petroleum-based polymers due to their renewable, degradable, and environmentally friendly characteristics, along with economic benefits. However, the poor interfacial bonding between the matrix and natural fiber reinforcement remained a key issue limiting their mechanical and thermal properties. Focusing on cost-effective, convenient, and low-pollution chemical methods, this work proposed a strategy for in-situ synthesis of composite structures on bamboo fiber (BF) surfaces. Crude chitosan (CS) and reclaimed tannic acid (TA) were utilized as the raw materials, to construct stereo-netlike chitosan @ tannin structures (CS@TA) via a one-pot method facilitated by hydrogen bonding and complexation. The influence of reactant concentration and pH value on the process was further investigated and optimized. The CS@TA structure improved the interfacial bonding between the BF reinforcement and matrix poly(3-hydroxybutyrate) (PHB), and this non-amino-driven construction provided a potential reaction platform for functionalizing the interfacial layer. The modified biocomposite showed improvements in tensile and impact strengths (51.58 %, 41.18 %), also in tensile and flexural moduli (13.59 %, 26.88 %). Enhancements were also observed in thermal properties and heat capacity. This work presents a simple and promising approach to increase biocomposite interface bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134954DOI Listing

Publication Analysis

Top Keywords

bamboo fiber
8
interfacial bonding
8
thermal properties
8
in-situ construction
4
construction chitosan@tannin
4
chitosan@tannin structure
4
structure bamboo
4
fiber green
4
green convenient
4
convenient reinforcement
4

Similar Publications

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China. Electronic address:

Biomass-derived carbon, as an excellent support, has received extensive attention. In this work, carbon matrix obtained from bamboo fiber (BF) is served as a supporting material for the immobilization of platinum (Pt) nanoparticles, leading to a substantial improvement in the hydrogen evolution reaction (HER). This approach leverages the remarkable surface area, outstanding conductivity, and environmentally friendly characteristics of BF-derived carbon, facilitating the dispersion and stability of the Pt nanoparticles.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.

View Article and Find Full Text PDF

Combined use of steam explosion, alkali, and microbial methods improving the yield, structure and properties of soluble dietary fiber from bamboo shoot shells.

Food Chem

January 2025

College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China. Electronic address:

Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!