Keratin is one of the major components of solid waste, and the degradation products have extensive applications in various commercial industries. Due to the complexity of the structure of keratin, especially the disulfide bonds between keratin polypeptides, keratinolytic activity is efficient with a mixture of proteins with proteases, peptidases, and oxidoreductase activity. The present work aimed to create an engineered chimeric protein with a disulfide reductase domain and a protease domain connected with a flexible linker. The structure, stability, and substrate interaction were analyzed using the protein modeling tools and codon-optimized synthetic gene cloned, expressed, and purified using Ni-NTA chromatography. The keratinolytic activity of the protein was at its maximum at 70 °C. The suitable pH for the enzyme activity was pH 8. While Ni, Mg, and Na inhibited the keratinolytic activity, Cu, Ca, and Mn enhanced it significantly. Biochemical characterization of the protease domain indicated significant keratinolytic activity at 70 °C at pH 10.0 but was less efficient than the chimeric protein. Experiments using feathers as the substrate showed a clear degradation pattern in the SEM analysis. The samples collected from the degradation experiments indicated the release of proteins (2-fold) and amino acids (8.4-fold) in a time-dependent manner. Thus, the protease with an added disulfide reductase domain showed excellent keratin degradation activity and has the potential to be utilized in the commercial industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135025 | DOI Listing |
Biotechnol Appl Biochem
December 2024
Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India.
Two marine-derived bacteria, Bacillus paralicheniformis (HR-1) and Bacillus haynesii (HR-5), were isolated from sediments and identified using 16S ribosomal RNA gene amplification and sequencing as well as biochemical analysis. The development of a bacterial consortium (HR-1 & HR-5) from these two bacteria was used to increase the production of the protease enzyme under various conditions, including fermentation media, carbon and nitrogen sources (1% w/v), different pH levels, incubation time, and the obtained enzyme, were detected using SDS-PAGE followed by purification. Bacterial consortium HR-1 & HR-5 exhibited maximum protease production (330.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
University of Jeddah, Applied College, Biology Department, Jeddah, Saudi Arabia.
Microbial proteases and keratinases find extensive application in both the detergent and leather industries, as well as in poultry waste management. In this study, a multifunctional strain MH1 exhibiting proteolytic and keratinolytic activities was newly isolated and identified as Bacillus zhangzhouensis. To improve its stability, the proteolytic extract was spray-dried and the stability was assessed during two years of storage.
View Article and Find Full Text PDFFuture Microbiol
November 2024
Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
Aims: This study identified and determined antibiograms of keratinolytic dermatophytes (DM), non-dermatophytic molds (NDM), and yeasts causing onychomycosis.
Methods: Morphological, cultural, and biochemical characteristics were used to identify DM and NDM. The keratinolytic activity (KA) and antibiograms were conducted with keratin azure and the agar diffusion method, respectively.
Int J Biol Macromol
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:
PLoS One
October 2024
Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan.
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!