The rhizosphere is generally depleted in nutrients, but as a hotspot of microbial activity it fosters crop P uptake. We hypothesized that P contents of water extractable nanoparticles (<0.1 μm) and small sized colloids (<0.45 μm) differ between non-rhizosphere and rhizosphere soil. To test this hypothesis, rhizosphere and non-rhizosphere soils (Luvisol and Cambisol) were sampled at harvest period of winter wheat near Selhausen (Germany). Microaggregate and colloidal fractions in the size range of 53-250 μm, 20-53 μm, 0.45-20 μm, and <0.45 μm were separated by wet-sieving and centrifugation. Subsequently, the colloids <0.45 μm were further isolated in 0.66-20 nm, 20-100 nm and 100-450 nm fractions using asymmetric flow field flow fractionation (AF4) and directly analyzed by online coupled organic carbon detector (OCD) and inductively coupled plasma mass spectrometry (ICP-MS) for element composition. No significant differences (p > 0.05) were measured between rhizosphere and non-rhizosphere soil P contents of microaggregate fractions. The rhizosphere soil, however, showed ∼26 % depletion of average P content in the 0.66-20 nm fraction, which went along with an enrichment of P content of the 100-450 nm fraction by a factor of two. Apparently, P uptake by plants results in a redistribution of P in the rhizosphere, with small nanoparticles providing available P to plants while excess residual P is bound to fine colloids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175798 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:
In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Theranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!