Utilizing plant extracts for soil washing is a promising and cost-efficient strategy to permanently remove toxic metals from farmland soils. However, the efficiency of current plant extracts in heavy metals removal is constrained by the need of excessively high liquid-solid ratios (>10:1), which limits their practical application in the farmland soils. To address this challenge, we developed a novel binary washing agent consisting of Fructus mume residue extract (RPM) and methylglycinediacetate acid (MGDA). Through optimization experiments, we determined an optimal composition of 50 g L RPM and 0.34 g L MGDA (RPMG3), which exhibited a remarkable synergistic effect on the removal of Cd and Cu from two polluted farmland soils. Compared to the single use of RPM or MGDA, RPMG3 increased metal removal efficiency by 44.6%-303.8% in the alkaline dryland soil and 55.8%-141.9% in the slightly acidic paddy soil, at an optimum liquid-solid ratio of 2:1. The contents of soil Cd and Cu can be reduced to below the risk screening values via acid activation, metal ion exchange, and complexation of functional groups. Moreover, the potential ecological risks associated with Cd in the soils were significantly mitigated due to the decrease in exchangeable and reducible Cd fractions following RPMG3 washing. Additionally, RPM and RPMG3 washing led to enhancements in soil organic carbon and nutrient concentrations, as well as increased activities of soil enzymes including catalase, urease, and β-glucosidase. Notably, RPMG3 washing exhibited the most pronounced promotion effect on wheat seed germination and growth. Taken together, the binary complex of RPMG3 demonstrates potential as an environmentally friendly green washing agent capable of in reducing heavy metals from farmland soil with great efficiency, even at low liquid-solid ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124809 | DOI Listing |
Front Parasitol
March 2024
Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research -Water Research Institute, Accra, Ghana.
Neglected tropical diseases (NTDs) affect over a billion people worldwide. The 2021-2030 NTD road map calls for innovative and highly efficient interventions to eliminate or significantly reduce the burden of NTDs. These include sensitive and cost-effective diagnostic techniques for disease surveillance.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mining Engineering, College of Engineering, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box: 16417, Ethiopia.
Developing nations like Ethiopia face food and water shortages due to weather and droughts. The Bowa Dayole masonry gravity dam is expected to irrigate farmland downstream. Despite this, the engineering geology is complicated by the presence of highly fractured and weathered aphanitic basaltic rock, along with a weak unwelded to welded tuff rock mass in the dam foundation.
View Article and Find Full Text PDFFront Antibiot
May 2024
Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States.
Introduction: The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!