Natural compound phloretin restores periodontal immune homeostasis via HIF-1α-regulated PI3K/Akt and glycolysis in macrophages.

Int Immunopharmacol

State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Published: November 2024

Periodontitis is a chronic inflammatory disease that affects about 45 %-50 % of adults worldwide, but the efficacy of current clinical therapies is unsatisfactory due to the complicated periodontal immune microenvironment. Thus, developing drugs that can regulate innate immune cells (e.g., macrophages) is a potent strategy to treat periodontitis. Here, we report that phloretin, a food plant-derived natural compound, is sufficient to alleviate periodontitis through immune regulation. In vivo, phloretin treatment could significantly reduce alveolar bone resorption and periodontal inflammation in mouse periodontitis models. In vitro, phloretin could suppress proinflammatory (M1-like) polarization and cytokine release in macrophages induced by LPS. Mechanistically, the immune regulatory role of phloretin in macrophages may be due to its metabolic regulation effect. Phloretin might restore the balance of M1/M2 macrophage transition in periodontitis by inhibiting HIF-1α-mediated glycolysis and PI3k/Akt pathways, thereby reducing the proinflammatory effect and immune disorder caused by over-activated M1 macrophages. Together, this study highlights that natural compound, such as phloretin, can restore periodontal immune homeostasis by metabolic regulation of macrophages, which may provide novel insight into the treatment of periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.112933DOI Listing

Publication Analysis

Top Keywords

natural compound
12
periodontal immune
12
compound phloretin
8
immune homeostasis
8
metabolic regulation
8
phloretin restore
8
phloretin
7
immune
7
macrophages
6
periodontitis
6

Similar Publications

Gold-Catalyzed Synthesis of (Dihydro)quinolones by Cyclization of Benzaldehyde-Tethered Ynamides and Anilines.

Org Lett

March 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

2-Quinolones represent a versatile class of compounds that are prevalent in natural and medicinally relevant molecules. Here we report a new approach to the selective formation of these structures. By gold catalysis, a range of benzaldehyde-tethered ynamides reacted with anilines, leading to 4-amino-3,4-dihydro-2-quinolones with high efficiency and excellent diastereoselectivity in dichloromethane.

View Article and Find Full Text PDF

Astracondensatol D: A 6/6/5/6 Cycloartane Triterpenoid from .

Org Lett

March 2025

National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States.

Astracondensatol D (), a pentacyclic triterpenoid featuring an uncommon 6/6/5/6-fused ring system, along with its precursor astracondensatol E (), and two simplified 20(27)-octanorcycloastragenol derivatives ( and ) were isolated from for the first time. Classical NMR spectroscopic data, integrated with NMR and DP4+ calculations, unambiguously determined their absolute stereostructures. X-ray crystallography provided independent confirmation of the structure of compound .

View Article and Find Full Text PDF

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Glycerol dialkyl glycerol tetraethers (GDGTs) are a group of membrane spanning lipids produced by both Archaea and Bacteria. Branched GDGTs (brGDGTs) are a class of these tetraether lipids known to be produced by certain bacteria and are commonly found in terrestrial environments. Due to their environmental ubiquity, high preservation potential, and role in membrane adaptation, brGDGTs form the basis of many widely employed paleoenvironmental proxies.

View Article and Find Full Text PDF

Unlocking Ectoine's Postbiotic Therapeutic Promise: Mechanisms, Applications, and Future Directions.

Probiotics Antimicrob Proteins

March 2025

School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.

Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!